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Abstract

We consider a large portfolio limit where the asset prices evolve according certain
stochastic volatility models with default upon hitting a lower barrier. When the
asset prices and the volatilities are correlated via systemic Brownian Motions, that
limit exist and it is described by a SPDE on the positive half-space with Dirichlet
boundary conditions which has been studied in [12]. We study the convergence of the
total mass of a solution to this stochastic initial-boundary value problem when the
mean-reversion coefficients of the volatilities are multiples of a parameter that tends
to infinity. When the volatilities of the volatilities are multiples of the square root of
the same parameter, the convergence is extremely weak. On the other hand, when
the volatilities of the volatilities are independent of this exploding parameter, the
volatilities converge to their means and we can have much better approximations. Our
aim is to use such approximations to improve the accuracy of certain risk-management
methods in markets where fast volatility mean-reversion is observed.

1 Introduction

An interesting way to handle the complexity of the calibration of stochastic volatility
models is developed in [9]. The prices of several vanilla and exotic options under a
stochastic volatility model are written as series of negative powers of the mean-reversion
coefficient of the volatility process. Since the value of the mean-reversion coefficient is
generally observed to be large, by keeping the first two or three terms of these series
we obtain good approximations for the option prices, which are more accurate than the
corresponding Black-Scholes prices - obtained by keeping only the first term - while their
computation is much simpler than the computation of the exact prices under the full
stochastic volatility model.

In this paper our aim is to follow the ideas of [9] but instead of option prices look
at the systemic risk of such models in the large portfolio setting. Stochastic volatility
models in the large portfolio setting were first introduced in [12] where a two-dimensional
SPDE was derived for the density of asset prices and volatility as the large portfolio limit.
The existence of solutions to the SPDE was established but the uniqueness of solutions to
the SPDE remains an open question in the CIR volatility case. This is a significant issue

∗kolliopoulos@maths.ox.ac.uk
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when constructing numerical solutions to this SPDE. Ideally, we would like to construct
an approximate model, which goes beyond the constant volatility model studied in [6],
but which is also easier to handle than the full two-dimensional models. Unfortunately,
we are only able to show convergence to a constant volatility model as a factor of the
mean-reversion coefficients tends to infinity, and the existence of a first order correction
provided that the volatilities of the volatilities are independent of the exploding factor
(small vol-of-vol case). Moreover, the errors tend to zero only in a weak sense, and we are
also unable to determine the correction explicitly, since even though it solves an SPDE on
the positive half-line, we are not able to derive a boundary condition at zero. However, in
the small vol-of-vol case, we can estimate the rate of convergence to a constant volatility
model, and this is the best possible result we can have at this stage.

As discussed in [12], the main applications of large portfolio modelling arise in risk
management and in the pricing of derivatives like CDO tranches. In this paper we will
focus on the applications in risk management, where we need to estimate the proba-
bility that the total loss Lt within the portfolio at some time t > 0 exceeds a cer-
tain proportion. Following the notation and the results from [12], we would have that
Lt = 1−P

(
X1
t > 0 |W 0

· , B
0
· , G

)
, where Xi

· stands for the i-th logarithmically scaled price
process which satisfies the system of SDEs

dXi
t =

(
ri − h2(σit)

2

)
dt+ h(σit)

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

dσit = ki(θi − σit)dt+ ξi
√
σit

(√
1− ρ2

2,idB
i
t + ρ2,idB

0
t

)
, t ≥ 0

Xi
t = 0, t > Ti

(Xi
0, σ

i
0) = (xi, σi),

(1.1)

for all i ∈ {1, 2, ...}, with Ti being the first time Xi
· hits 0, Ci = (k1, θ1, ξ1, r1, ρ1,1, ρ2,1)

for i = 1, 2, ... being i.i.d random vectors such that kiθi >
3ξ2
i

4 a.s for every i ∈ {1, 2, ...},
W 1
· , B

1
· , W

2
· , B

2
· , ... being pairwise independent standard Brownian Motions representing

idiosyncratic factors that affect each asset’s price, W 0
· , B

0
· being two (possibly correlated)

standard Brownian Motions describing the interdependence among the asset prices, and
(xi, σi) for i = 1, 2, ... being random vectors with positive coordinates which are pairwise
independent given G. However, here we will consider a more general model, in which the
i-th logarithmically scaled asset price process Xi

· satisfies the system

dXi
t =

(
ri − h2(σit)

2

)
dt+ h(σit)

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

dσit = ki(θi − σit)dt+ ξig
(
σit
) (√

1− ρ2
2,idB

i
t + ρ2,idB

0
t

)
, t ≥ 0

Xi
t = 0, t > Ti

(Xi
0, σ

i
0) = (xi, σi),

(1.2)

for all i ∈ {1, 2, ...}, where the function g is chosen such that the volatility processes
possess certain crucial properties. Thus, under the above notation, our aim is to estimate
probabilities of the form:

P (Lt ∈ (1− b, 1− a)) = P
(
P
(
X1
t > 0 |W 0

· , B
0
· , G

)
∈ (a, b)

)
(1.3)

for some 0 ≤ a < b ≤ 1.
The natural way to adapt the ideas from [9] to our setting is to set ki = κi

ε and ξi = vi√
ε

for all i = 1, 2, ..., with {κi : i ∈ {1, 2, ...}} and {vi : i ∈ {1, 2, ...}} being sequences of
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non-negative i.i.d random variables that do not depend on ε, and then try to approximate
the quantity in (1.3) by something more accurate than its limit as ε → 0+. However,
we will see that in this fast mean-reversion - large vol-of-vol setting, the convergence
of the system as ε → 0+ is very weak, which does not allow us to hope for such an
approximation. Moreover, this convergence can only be obtained under the unrealistic
assumption that the market noises W 0

· and B0
· are uncorrelated. For this reason, we

will also consider the fast mean-reversion - small vol-of-vol setting, where again we have
ki = κi

ε for all i = 1, 2, ..., but this time {ξi : i ∈ {1, 2, ...}} is a sequence of non-negative
i.i.d random variables which does not depend on ε. We will show in section 6 that in this
small vol-of-vol setting we can also estimate the rate of convergence as ε→ 0+, even for
correlated market noises, provided that a certain regularity condition is satisfied at both
a and b.

2 Fast mean-reversion - large vol-of-vol: A first approach

We begin with the study of the fast mean-reversion - large vol-of-vol setting, for which
we need to assume that W 0

· and B0
· are uncorrelated. It has been proven in [12] that

P
(
X1
t > 0 |W 0

· , B
0
· , G

)
= E

[∫ +∞

0

∫ +∞

0
uC1 (t, x, y) dxdy |W 0

· , B
0
· , G

]
(2.1)

where uC1 is a regular solution to the SPDE

uC1(t, x, y) = U0(x, y |G)− r1

∫ t

0
(uC1(s, x, y))x ds

+
1

2

∫ t

0
h2(y) (uC1(s, x, y))x ds− k1θ1

∫ t

0
(uC1(s, x, y))y ds

+k1

∫ t

0
(yuC1(s, x, y))y ds+

1

2

∫ t

0
h2(y) (uC1(s, x, y))xx ds

+ξ1ρ3ρ1,1ρ2,1

∫ t

0
(h (y) g (y)uC1(s, x, y))xy ds

+
ξ2

1

2

∫ t

0

(
g2 (y)uC1(s, x, y)

)
yy
ds

−ρ1,1

∫ t

0
h(y) (uC1(s, x, y))x dW

0
s

−ξ1ρ2,1

∫ t

0
(g (y)uC1(s, x, y))y dB

0
s , (2.2)

in the half-space R+×R, and expectation in (2.1) is taken to average over all the possible
values of the coefficient vector C1. Substituting from k1 = κ1

ε and ξ1 = v1√
ε

and writing

Cε1 for C1 to mention the dependence on ε, the above SPDE can be written as

uCε1(t, x, y) = U0(x, y |G)− r1

∫ t

0

(
uCε1(s, x, y)

)
x
ds

+
1

2

∫ t

0
h2(y)

(
uCε1(s, x, y)

)
x
ds− κ1θ1

ε

∫ t

0

(
uCε1(s, x, y)

)
y
ds
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+
κ1

ε

∫ t

0

(
yuCε1(s, x, y)

)
y
ds+

1

2

∫ t

0
h2(y)

(
uCε1(s, x, y)

)
xx
ds

+
v1√
ε
ρ3ρ1,1ρ2,1

∫ t

0

(
h (y) g (y)uCε1(s, x, y)

)
xy
ds

+
v2

1

2ε

∫ t

0

(
g2 (y)uCε1(s, x, y)

)
yy
ds

−ρ1,1

∫ t

0
h(y)

(
uCε1(s, x, y)

)
x
dW 0

s

− v1√
ε
ρ2,1

∫ t

0

(
g (y)uCε1(s, x, y)

)
y
dB0

s , (2.3)

A reasonable approach to our problem is to try to expand uεC1
as a series of natural

powers of εp for some p > 0, with the coefficients being random functions of t, x and
y, substitute in (2.3), and solve the stochastic equations arising by equating coefficients.
However, due to the presence of the stochastic integral with respect to B0

· , we obtain
two equations whenever we equate the coefficients of two terms of the form εnp, and this
renders the system of stochastic equations arising this way unsolvable. This difficulty we
face has also a second explanation: In the CIR case (model 1.1), uCε1 has been computed
explicitly in [12] and it is equal to

pεt
(
y|B0

· ,G
)
E
[
u
(
t, x,W 0

· ,G, Cε1, h
(
σ1,ε
.

))
|W 0
· , σ

1,ε
t = y,B0

· , C
ε
1,G
]

where we write σ1,ε
· for σ1

· to mention again the dependence on ε, and pεt for the density
of the volatility process when the path of B0

· is given. Under appropriate restrictions on
the function g, we can extend the above formula to the more general case (model (1.2)).
Obviously, pεt contains information for the path of B0

· and, intuitively, this means that we
need pathwise convergence of σ1,ε

· as ε→ 0+ to have convergence of this density. On the
other hand, the volatility processes we consider here converge weakly when we take the
mean-reversion coefficient tending to infinity. However, since the above problem is mainly
caused by pεt, we hope that we may be able to obtain some good results by controlling
appropriately pεt and by trying to approximate the second factor of uCε1 , i.e the term

E
[
u
(
t, x,W 0

· ,G, Cε1, h
(
σ1,ε
.

))
|W 0
· , σ

1,ε
t = y,B0

· , C
ε
1,G
]
.

We observe now that since we are interested in the probability of an event concerning
the loss process, which depends on the conditional density pεt and the above conditional
expectation, we can replace

(
W 1
· , W

0
· , B

1
· , B

0
· , C

ε
1

)
by anything having the same law for

each ε > 0. We look thus at the SDE satisfied by the process σ1,ε
· , i.e

σ1,ε
t = σ1,ε

0 +
κ1

ε

∫ t

0
(θ1 − σ1,ε

s )ds+
v1√
ε

∫ t

0
g
(
σ1,ε
s

)
d
(√

1− ρ2
2,1B

1
s + ρ2,1B

0
s

)
. (2.4)

and we observe that if we substitute t = εt′ and s = εs′ for 0 ≤ s′ ≤ t′, and then we

replace
(
W 1
· , W

0
· , B

1
· , B

0
· , C

ε
1

)
by
(
W 1
· , W

0
· ,
√
εB1
·
ε
,
√
εB0
·
ε
, Cε1

)
which has the same law,

the above SDE becomes

σ1,ε
εt′ = σ1,ε

0 + κ1

∫ t′

0
(θ1 − σ1,ε

εs′ )ds
′ + v1

∫ t′

0
g
(
σ1,ε
εs′

)
d
(√

1− ρ2
2,1B

1
s′ + ρ2,1B

0
s′

)
. (2.5)
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This shows that σ1,ε
ε· can be replaced by the volatility process of our model when the

coefficient vector C1 is replaced by C ′1 = (κ1, θ1, v1, r1, ρ1,1, ρ2,1), which is just σ1,1
· (the

volatility process when ε = 1). Thus, we can replace σ1,ε
t by σ1,1

t
ε

for all t ≥ 0, which

allows us to replace

E
[
u
(
t, x,W 0

· ,G, Cε1, h
(
σ1,ε
.

))
|W 0
· , σ

1,ε
t = y,B0

· , C
ε
1,G
]

by the conditional expectation

E
[
u
(
t, x,W 0

· ,G, C ′1, h
(
σ1,1
·
ε

))
|W 0
· , σ

1,1
t
ε

= y,B0
· , C

′
1,G
]
.

The above quantity is what we need to approximate now. Of course, a first step is to show
the convergence of that conditional expectation as ε→ 0+, which motivates us to look for

some kind of convergence for the random function uε (t, x) := u
(
t, x,W 0

· ,G, C ′1, h
(
σ1,1
·
ε

))
as ε −→ 0+, when the volatility path σ1,1

· and the coefficient vector C ′1 are given.
The approach explained above is the subject of the next section, but we will also see

a different approach to the same problem in section 4. The two approaches are going to
give different limits, and thus it will become clear that the convergence of our system is
so weak that no good approximations should be expected. In both approaches, we need
to assume that our function g is chosen such that every pair of volatility processes has a
nice ergodic behaviour. This property is defined below

Definition 2.1 (Positive recurrence property). We fix the distribution from which
each Ci is chosen, and we denote by C the σ-algebra generated by all the Cis. Then,
we say that g has the strong positive recurrence property when the two-dimensional

process
(
σi,1· , σ

j,1
·

)
is a positive recurrent diffusion for any two i, j ∈ N. This means

that there exists a two-dimensional random variable
(
σi,j,1,∗, σi,j,2,∗

)
whose distribution

is stationary for
(
σi,1· , σ

j,1
·

)
, and whenever E

[∣∣F (σi,j,1,∗, σi,j,2,∗)∣∣ | C] exists and is finite

for some function F : R2 → R, we also have:

lim
T→+∞

1

T

∫ T

0
F
(
σi,1s , σj,1s

)
ds = E

[
F
(
σi,j,1,∗, σi,j,2,∗

)
| C
]

(2.6)

P-almost surely.

Remark 2.2. By a change of variables, we can easily verify that when we have (2.6), we
also have

lim
ε→0+

1

t

∫ t

0
F
(
σi,1s
ε
, σj,1s

ε

)
ds = E

[
F
(
σi,j,1,∗, σi,j,2,∗

)
| C
]

(2.7)

P-almost surely, for any t > 0, and this shows why we have chosen to change the timescale

of our volatility processes by replacing
(
B1
· , B

0
· , C

ε
1

)
by
(√

εB1
·
ε
,
√
εB0
·
ε
, Cε1

)
Before proceeding to the convergence result we have for uε as ε→ 0+, we will mention

two Theorems which give us a few classes of models for which the positive recurrence
property is satisfied. The first theorem shows that for the Ornstein-Uhlenbeck model
(g(x) = 1 for all x ∈ R) we have always the positive recurrence property. The second
theorem shows that for the CIR model (g(x) =

√
|x| for all x ∈ R) we have the positive

recurrence property provided that the random coefficients of the volatilities satisfy certain
conditions.
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Theorem 2.3. Suppose that g is a differentiable function, bounded from below by some
cg > 0. Suppose also that g′(x)κi(θi−x) < κig(x)+ vi

2 g
′′(x)g2(x) for all x ∈ R and i ∈ N,

for all possible values of Ci. Then g has the positive recurrence property.

Theorem 2.4. Suppose that g(x) =
√
|x|g̃(x), where the function g̃ is a continuously

differentiable, strictly positive and increasing function taking values in [cg, 1] for some
cg > 0. Then, there exists an η > 0 such that g has the positive recurrence property when
‖Ci − Cj‖L∞(R6) < η and κi

v2
j
> 1

4 + 1√
2

for all i, j ∈ N, P - almost surely.

The proofs of the above two theorems can be found in the Appendix.

3 Large mean reversion - large vol-of-vol: Weak conver-
gence of uε

In this section, we fix the volatility path σ1,1
· and the coefficient vector C ′1, which means

that all expectations are taken given σ1,1
· and C ′1. We will write Eσ,C do denote these

expectations, and L2
σ,C to denote the corresponding L2 norms. Given the pair

(
σ1,1
· , C ′1

)
,

we prove that uε does indeed converge as ε→ 0+. We can only prove weak convergence,
but we are able to characterize the limit provided that the function h satisfies a few
boundedness conditions.

We start by recalling Theorem 4.1 from [12], according to which, uε is the unique
solution to the following SPDE:

uε(t, x) = u0(x)−
∫ t

0

r − h2
(
σ1,1
s
ε

)
2

uεx(s, x)ds

+

∫ t

0

h2
(
σ1,1
s
ε

)
2

uεxx(s, x)ds− ρ1,1

∫ t

0
h
(
σ1,1
s
ε

)
uεx(s, x)dW 0

s (3.1)

for which we have also the identity

‖uε(t, ·)‖2L2(R+) +
(
1− ρ2

1,1

) ∫ t

0
h2
(
σ1,1
t
ε

)
‖uεx(s, ·)‖2L2(R+) ds = ‖u0‖2L2(R+) . (3.2)

where u0 stands for the common probability density of the asset prices at t = 0, given the
information of the σ-algebra G. The last identity shows that the L2(R+) norms of the
solutions uε, and their L2([0, T ] × R+) norms as well (for any T > 0), are all uniformly
bounded by a random variable which has a finite L2

σ,C(Ω) norm (the assumptions made
in [12] are also needed for this). It follows that in a subsequence of any given sequence
of values of ε which tends to zero, we have weak convergence to some element u, and we
can have this both in L2

σ,C([0, T ]×R+×Ω) and P-almost surely in L2([0, T ]×R+). The
characterization of the weak limits u is given in the following theorem.

Theorem 3.1. Suppose that g has the positive recurrence property and that for some
C > 0 we have |h(x)| ≤ C for all x ≥ 0. Any weak limit u of uε in L2

σ,C([0, T ]×R+×Ω)
solves the following SPDE
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u(t, x) = u0(x)−

(
r −

σ2
1,1

2

)∫ t

0
ux(s, x)ds

+
σ2

1,1

2

∫ t

0
uxx(s, x)ds− ρ1,1σ2,1

∫ t

0
ux(s, x)dW 0

s (3.3)

for σ1,1 =
√

E [h2 (σ1,∗) | C] and σ2,1 = E
[
h
(
σ1,∗) | C], where σ1,∗ is a random variable

following the stationary distribution of our volatility process σ1,1
· . If h is bounded from

below by a positive constant c > 0, the same weak convergence holds also in H1
0 (R+) ×

L2
σ,C(Ω× [0, T ]), and u is then the unique solution to (3.3) in that space. The last means

that there is a unique subsequential weak limit, and thus we have weak convergence as
ε→ 0+.

Proof. Let V be the set of W 0
· -adapted, square-integrable semimartingales on [0, T ].

This means that for any {Vt : 0 ≤ t ≤ T} ∈ V, there exist two W 0
· -adapted and square-

integrable stochastic processes {v1,t : 0 ≤ t ≤ T} and {v2,t : 0 ≤ t ≤ T}, such that

Vt = V0 +

∫ t

0
v1,sds+

∫ t

0
v2,sdW

0
s (3.4)

for all t ≥ 0. The processes of the above form for which {v1,t : 0 ≤ t ≤ T} and
{v2,t : 0 ≤ t ≤ T} are simple processes, i.e

vi,t = FiI[t1, t2](t) (3.5)

for all 0 ≤ t ≤ T and i ∈ {1, 2}, with each Fi being FW 0

t1 -measurable, span a linear

subspace Ṽ which is dense in V under the L2 norm. By using the estimate (3.2), for any
p > 0 and any T > 0 we can easily obtain∫ T

0

∥∥∥hp (σ1,1
t
ε

)
uε(t, ·)

∥∥∥2

L2
σ,C(R+×Ω)

dt ≤ TC2p ‖u0‖2L2(R+) (3.6)

It follows that for any sequence εn → 0+, there exists a subsequence {εkn : n ∈ N}, such

that hp
(
σ1,1
·
ε

)
uε(·, ·) converges weakly to some up(·, ·) in L2

σ,C([0, T ] × R+ × Ω) for all

p ∈ {1, 2}. Testing (3.1) against an arbitrary smooth and compactly supported function
f of x ∈ R+, using Ito’s formula for the product of

∫
R+ u

ε (·, x) f(x)dx with a process

V· ∈ Ṽ having the form (3.4) - (3.5), and finally taking expectations, we find that:

Eσ,C
[
Vt

∫
R+

uε(t, x)f(x)dx

]
= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]
+ r

∫ t

0
Eσ,C

[
Vs

∫
R+

uε(s, x)f ′(x)dx

]
ds

−
∫ t

0
Eσ,C

Vs ∫
R+

h2
(
σ1,1
s
ε

)
2

uε(s, x)f ′(x)dx

 ds

7



+

∫ t

0
Eσ,C

Vs ∫
R+

h2
(
σ1,1
s
ε

)
2

uε(s, x)f ′′(x)dx

 ds
+

∫ t

0
Eσ,C

[
v1,s

∫
R+

uε(s, x)f(x)dx

]
ds

+ρ1,1

∫ t

0
Eσ,C

[
v2,s

∫
R+

h
(
σ1,1
s
ε

)
uε(s, x)f ′(x)dx

]
ds (3.7)

for all t ≤ T . Thus, setting ε = εkn and taking n→ +∞, by the weak convergence results
mentioned above we obtain

Eσ,C
[
Vt

∫
R+

u(t, x)f(x)dx

]
= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]
− r

∫ t

0
Eσ,C

[
Vs

∫
R+

u(s, x)f ′(x)dx

]
ds

+
1

2

∫ t

0
Eσ,C

[
Vs

∫
R+

u2(s, x)f ′(x)dx

]
ds

+
1

2

∫ t

0
Eσ,C

[
Vs

∫
R+

u2(s, x)f ′′(x)dx

]
ds

+

∫ t

0
Eσ,C

[
v1,s

∫
R+

u(s, x)f(x)dx

]
ds

+ρ1,1

∫ t

0
Eσ,C

[
v2,s

∫
R+

u1(s, x)f ′(x)dx

]
ds (3.8)

for all 0 ≤ t ≤ T . The convergence of the terms in the RHS of (3.7) holds pointwise
in t, while the one term in the LHS converges weakly. Since we can easily find uniform
bounds for all the terms in (3.7) (by using (3.6)), the dominated convergence theorem
implies that all the weak limits coincide with the corresponding pointwise limits, which
gives (3.8) as a limit of (3.7) both weakly and pointwise in t. It is clear then that
Eσ,C

[
Vt
∫
R+ u(t, x)f(x)dx

]
is differentiable in t (in a W 1,1 sense). Next, we can also

check that Eσ,C
[
vi,t
∫
R+ u

εkn (t, x)f(x)dx
]

converges to Eσ,C
[
vi,t
∫
R+ u(t, x)f(x)dx

]
for

i ∈ {1, 2}, both weakly and pointwise in t ∈ [0, T ], while the limits are also differentiable
in t everywhere except the two jump points t1 and t2. This follows from the fact that
everything is zero outside [t1, t2], while both v1,· and v2,· are constant in t and thus of the
form (3.4) - (3.5) if we restrict on that interval. Observe now that we can write (3.7) as

Eσ,C
[
Vt

∫
R+

uε(t, x)f(x)dx

]
= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]
+ r

∫ t

0
Eσ,C

[
Vs

∫
R+

uε(s, x)f ′(x)dx

]
ds

−
∫ t

0

h2
(
σ1,1
s
ε

)
2

×
(
Eσ,C

[
Vs

∫
R+

uε(s, x)f ′(x)dx

]
− Eσ,C

[
Vs

∫
R+

u(s, x)f ′(x)dx

])
ds

−
∫ t

0

h2
(
σ1,1
s
ε

)
2

Eσ,C
[
Vs

∫
R+

u(s, x)f ′(x)dx

]
ds
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+

∫ t

0

h2
(
σ1,1
s
ε

)
2

×
(
Eσ,C

[
Vs

∫
R+

uε(s, x)f ′′(x)dx

]
− Eσ,C

[
Vs

∫
R+

u(s, x)f ′′(x)dx

])
ds

+

∫ t

0

h2
(
σ1,1
s
ε

)
2

Eσ,C
[
Vs

∫
R+

u(s, x)f ′′(x)dx

]
ds

+

∫ t

0
Eσ,C

[
v1,s

∫
R+

uε(s, x)f(x)dx

]
ds

+ρ1,1

∫ t

0
h
(
σ1,1
s
ε

)
×
(
Eσ,C

[
v2,s

∫
R+

uε(s, x)f ′(x)dx

]
− Eσ,C

[
v2,s

∫
R+

u(s, x)f ′(x)dx

])
ds

+ρ1,1

∫ t

0
h
(
σ1,1
s
ε

)
Eσ,C

[
v2,s

∫
R+

u(s, x)f ′(x)dx

]
ds

(3.9)

Then we have∣∣∣∣∫ t

0
h
(
σ1,1
s
ε

)(
Eσ,C

[
v2,s

∫
R+

uε(s, x)f ′(x)dx

]
− Eσ,C

[
v2,s

∫
R+

u(s, x)f ′(x)dx

])
ds

∣∣∣∣
≤ C

∫ t

0

∣∣∣∣Eσ,C [v2,s

∫
R+

uε(s, x)f ′(x)dx

]
− Eσ,C

[
v2,s

∫
R+

u(s, x)f ′(x)dx

]∣∣∣∣ ds
which tends to zero (when ε = εkn and n→ +∞) by the dominated convergence theorem,
since the quantity inside the last integral converges pointwise to zero as we have mentioned
earlier, while it can be dominated by using (3.6). The same argument is used to show
that 4th and 6th terms in (3.9) tend also to zero in the same subsequence. Finally, for
any term of the form∫ t

0
hp
(
σ1,1
s
ε

)
Eσ,C

[
Vs

∫
R+

u(s, x)f (m)(x)dx

]
ds

for p,m ∈ {0, 1, 2}, we can recall the differentiability of the second factor inside the
integral (which was mentioned earlier) and then use integration by parts to write it as:∫ t

0
hp
(
σ1,1
w
ε

)
dw

(
Eσ,C

[
Vs

∫
R+

u(t, x)f (m)(x)dx

])
−
∫ t

0

∫ s

0
hp
(
σ1,1
w
ε

)
dw

(
Eσ,C

[
Vs

∫
R+

u(s, x)f (m)(x)dx

])′
ds

which converges, by the positive recurrence property, to the quantity

tE
[
hp
(
σ1,∗) | C](Eσ,C [Vs ∫

R+

u(t, x)f (m)(x)dx

])
−
∫ t

0
sE
[
hp
(
σ1,∗) | C](Eσ,C [Vs ∫

R+

u(s, x)f (m)(x)dx

])′
ds.

9



By using integration by parts once more, the last is equal to

E
[
hp
(
σ1,∗) | C] ∫ t

0
Eσ,C

[
Vs

∫
R+

u(s, x)f (m)(x)dx

]
ds (3.10)

The last convergence result holds also if we replace V· by v1,· or v2,·, as we can show by
following exactly the same steps in the subinterval [t1, t2] (where vi,· is supported for
i ∈ {1, 2} and where we have differentiability that allows integration by parts).

If we set now ε = εkn in (3.9), take n→ +∞, and substitute all the above convergence
results, we obtain

Eσ,C
[
Vt

∫
R+

u(t, x)f(x)dx

]
= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]
+

(
r −

σ2
1,1

2

)∫ t

0
Eσ,C

[
Vs

∫
R+

u(s, x)f ′(x)dx

]
ds

+
σ2

1,1

2

∫ t

0
Eσ,C

[
Vs

∫
R+

u(s, x)f ′′(x)dx

]
ds

+

∫ t

0
Eσ,C

[
v1,s

∫
R+

u(s, x)f(x)dx

]
ds

+ρ1,1σ2,1

∫ t

0
Eσ,C

[
v2,s

∫
R+

u(s, x)f ′(x)dx

]
ds. (3.11)

Since Ṽ is dense in V, for a fixed t ≤ T , we can have (3.11) for any square-integrable
Martingale {Vs : 0 ≤ s ≤ t}, for which we obviously have v1,s = 0 for all 0 ≤ s ≤ t.
Next, we denote by Ru(t, x) the RHS of (3.3). Using then Ito’s formula for the product
of
∫
R+ Ru(t, x)f(x)dx with Vt, subtracting Vt

∫
R+ u(t, x)f(x)dx from both sides, taking

expectations and finally substituting from (3.11), we find that

Eσ,C
[
Vt

(∫
R+

Ru(t, x)f(x)dx−
∫
R+

u(t, x)f(x)dx

)]
= 0

for any t ≤ T . By the Martingale Representation Theorem, for that fixed t ≤ T , Vt can
be taken equal to the indicator IEt , where we define

Et =

{
ω ∈ Ω :

∫
R+

Ru(t, x)f(x)dx >

∫
R+

u(t, x)f(x)dx

}
(3.12)

and this allows us to write

Eσ,C
[
IEt
(∫

R+

Ru(t, x)f(x)dx−
∫
R+

u(t, x)f(x)dx

)]
= 0

for all 0 ≤ t ≤ T . If we integrate the above for t ∈ [0, T ] we obtain that∫ T

0
Eσ,C

[
IEt
(∫

R+

Ru(t, x)f(x)dx−
∫
R+

u(t, x)f(x)dx

)]
dt = 0

where the quantity inside the expectation is always non-negative and becomes zero only
when IEt = 0. This implies that

∫
R+ Ru(t, x)f(x)dx ≤

∫
R+ u(t, x)f(x)dx almost ev-

erywhere, and working in the same way with the indicator of the complement IEct we

10



can deduce the opposite inequality as well. Thus, we must have
∫
R+ Ru(t, x)f(x)dx =∫

R+ u(t, x)f(x)dx almost everywhere, and since the function f is an arbitrary smooth
function with compact support, we can deduce that Ru coincides with u almost every-
where, which gives (3.3).

If h is bounded from below, we can use (3.2) to obtain a uniform (independent from
ε) bound for the H1

0 (R+)×L2
σ,C(Ω× [0, T ]) norm of uεkn , which implies that in a further

subsequence, the weak convergence to u holds also in that Sobolev space, in which (3.3)
has a unique solution (see [6]). This implies convergence of uε to the unique solution of
(3.3) in H1

0 (R+)× L2
σ,C(Ω× [0, T ]), as ε→ 0+

4 Fast mean-reversion - large vol-of-vol: A different ap-
proach

As we have already mentioned, our final goal is to find good approximations for mass
probabilities of the form (1.3), which means that first we need to prove a convergence
result of the form

P
(
P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
∈ (a, b)

)
→ P

(
P
(
X1,∗
t > 0 |W 0

· , B
0
· , G

)
∈ (a, b)

)
(4.1)

as ε→ 0+, where X1,ε
· stands for the first asset price process with volatility path σ1,1

·
ε

and

coefficient vector C ′1 (as defined in the previous section), while X1,∗
· stands for some other

stochastic process. This is by definition the convergence in distribution of the random

mass over R+, i.e P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
, to P

(
X1,∗
t > 0 |W 0

· , B
0
· , G

)
. In this section

we are going to prove the more general

P
(
P
(
X1,ε
t ∈ I |W 0

· , B
0
· , G

)
∈ (a, b)

)
→ P

(
P
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

)
∈ (a, b)

)
(4.2)

for some process X1,∗
· and any interval I = (0, U ] with U ∈ (0,+∞]. However, what is

X1,∗
· going to be? Obviously, if X1,∗

· coincides (in distribution) with the process X1,w
·

whose density given
(
W 0
· , σ

1,1
· , C ′1, G

)
(on the set of positive real numbers) is the weak

limit u of uε derived in the previous section, we have a very stable result that allows us to
hope for better approximations. Otherwise, we cannot expect any convergence of the ran-
dom mass over I, better than convergence in distribution. Indeed, a limit in probability
has to coincide with the limit in distribution, and in this case it has to be also a strong L2

limit in some sequence εn ↓ 0 (because it will be a P - almost surely limit in some sequence,
and then we can apply the Dominated Convergence Theorem), so it has to be a weak

L2 limit as well. Then, for Ξ = P
(
X1,w
t ∈ I |W 0

· , σ
1,1
· , G

)
− P

(
X1,∗
t ∈ I |W 0

· , σ
1,1
· , G

)
,

assuming that the coefficient vector is the same constant vector for all the assets we have

0 = lim
n→+∞

E
[
Ξ
(
P
(
X1,εn
t ∈ I |W 0

· , B
0
· , G

)
− P

(
X1,∗
t ∈ I |W 0

· , B
0
· , G

))]
= lim

n→+∞
E
[
Ξ
(
P
(
X1,εn
t ∈ I |W 0

· , σ
1,1
· , G

)
− P

(
X1,∗
t ∈ I |W 0

· , σ
1,1
· , G

))]
= lim

n→+∞
E
[∫ +∞

0
ΞII(x)uεn(t, x)dx− ΞP

(
X1,∗
t ∈ I |W 0

· , σ
1,1
· , G

)]
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= E
[∫ +∞

0
ΞII(x)u(t, x)dx− ΞP

(
X1,∗
t ∈ I |W 0

· , σ
1,1
· , G

)]
= E

[
Ξ
(
P
(
X1,w
t ∈ I |W 0

· , σ
1,1
· , G

)
− P

(
X1,∗
t ∈ I |W 0

· , σ
1,1
· , G

))]
= E

[(
P
(
X1,w
t ∈ I |W 0

· , σ
1,1
· , G

)
− P

(
X1,∗
t ∈ I |W 0

· , σ
1,1
· , G

))2
]

> 0

for any bounded interval I, which is a contradiction.
When X1,∗

· and X1,w
· do not coincide and we only have weak convrgence, good approx-

imations of the RHS of (4.2) can only be obtained by studying the asymptotic behaviour
of the distribution of the random mass over I, and not the asymptotic behaviour of
that mass itself, which makes our problem really challenging since we have no idea how
this distribution looks like. Unfortunately, we will see that X1,∗

· is only equal to X1,w
·

when we have no market noise in our model, which means that we can only hope for
nice convergence results when the most important feature of the model we are studying
is removed! Moreover, the convergence in distribution result of this section can only
be obtained when the volatility coefficients are deterministic and the same for each as-
set, i.e (κi, θi, vi, ρ2,i) = (κ, θ, v, ρ2) for all i ∈ N. In the general case of i.i.d vectors
(κi, θi, vi, ρ2,i) for i ∈ N, we will see that we cannot even hope for the existence of a

process X1,∗
· satisfying (4.2). The main result of this section is given in the following

theorem

Theorem 4.1. Suppose that (κi, θi, vi, ρ2,i) = (κ, θ, v, ρ2) for all i ∈ N, which is a

deterministic 4-dimensional vector, and consider the stochastic process Y 1,∗
· which is

given by Y 1,∗
t = X1

0 +

(
r1 −

σ2
1,1

2

)
t + ρ̃1,1σ1,1W

0
t +

√
1− ρ̃2

1,1σ1,1W
1
t for all t ≥ 0, with

ρ̃1,1 = ρ1,1
σ̃
σ1,1

for some σ̃ ∈ [σ2,1, σ1,1], where σ2,1, σ1,1 are defined in Theorem 3.1.

Define then X1,∗
t = Y 1,∗

t∧τ1,∗, for τ1,∗ = inf{s ≥ 0 : Y 1,∗
s ≤ 0}. Then, if the func-

tion h is bounded and the function g has the positive recurrence property, we have that

P
(
X1,ε
t ∈ (0, U ] |W 0

· , B
0
· , G

)
converges in distribution to P

(
X1,∗
t ∈ (0, U ] |W 0

· , B
0
· , G

)
as ε→ 0+, for any U ∈ (0,+∞].

Proof. To have the desired convergence in distribution, we need to show that for every
bounded and continuous function G : R→ R we have:

E
[
G
(
P
(
X1,ε
t ∈ I |W 0

· , B
0
· , G

))]
→ E

[
G
(
P
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

))]
(4.3)

as ε → 0+, where I = (0,+∞]. Observe now that since the conditional probabilities
describing the default mass take values in the compact interval [0, 1], it is equivalent to
have the above for all continuous G : [0, 1]→ R. We actually need to have this only when
G is a polynomial, since in that case, for an arbitrary continuous function G and for a
polynomial P such that |P (x)−G(x)| < η for all x ∈ [0, 1], we have:∣∣∣E [G(P(X1,ε

t ∈ I |W 0
· , B

0
· , G

))]
− E

[
G
(
P
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

))]∣∣∣
≤
∣∣∣E [G(P(X1,ε

t ∈ I |W 0
· , B

0
· , G

))]
− E

[
P
(
P
(
X1,ε
t ∈ I |W 0

· , B
0
· , G

))]∣∣∣
12



+
∣∣∣E [P (P(X1,ε

t ∈ I |W 0
· , B

0
· , G

))]
− E

[
P
(
P
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

))]∣∣∣
+
∣∣∣E [P (P(X1,∗

t ∈ I |W 0
· , B

0
· , G

))]
− E

[
G
(
P
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

))]∣∣∣
≤ 2η +

∣∣∣E [P (P(X1,ε
t ∈ I |W 0

· , B
0
· , G

))]
− E

[
P
(
P
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

))]∣∣∣
where η can be taken as small as we want, and for that fixed η the last difference tends
to 0 as ε→ 0+. Finally, by linearity we only need to have (4.3) when G(x) = xm for all
x ∈ [0, 1], for some m ∈ N.

For a given m ∈ N now, let {Xi,ε
· : 1 < i ≤ m} be a collection of m−1 processes with

the same distribution as X1,ε
· , which are driven by the 4-dimensional Brownian Motions(

W 0
· , W

2
· , B

0
· , B

2
·
)
,
(
W 0
· , W

3
· , B

0
· , B

3
·
)
, ...,

(
W 0
· , W

m
· , B

0
· , B

m
·
)
. That is, for 1 ≤ i ≤ m

we define:

Y i,ε
t = Y i

0 +

∫ t

0

ri − h2
(
σi,1s
ε

)
2

 ds+

∫ t

0
h(σi,1s

ε
)
(√

1− ρ2
1,idW

i
s + ρ1,idW

0
s

)
with

σi,1t = σi,10 + κ

∫ t

0

(
θ − σi,1s

)
ds+ v

∫ t

0
g
(
σi,1s
)
ρ2dB

0
s + v

∫ t

0
g
(
σi,1s
)√

1− ρ2
2dB

i
s

for all t ≥ 0, and then we define Xi,ε
t = Y i,ε

t∧τ i,ε for τ i,ε = inf{s ≥ 0 : Y i,ε
s ≤ 0}. The m

processes {Xi,ε
· : 1 ≤ i ≤ m} are obviously pairwise i.i.d when the information contained

in W 0
· , B

0
· and G is given. Therefore we can write:

E
[
g
(
P
(
X1,ε
t ∈ I |W 0

· , B
0
· , G

))]
= E

[
Pm
(
X1,ε
t ∈ I |W 0

· , B
0
· , G

)]
= E

[
P
(
X1,ε
t ∈ I, X

2,ε
t ∈ I, ..., X

m,ε
t ∈ I |W 0

· , B
0
· , G

)]
= P

(
X1,ε
t ∈ I, X

2,ε
t ∈ I, ..., X

m,ε
t ∈ I

)
= P

((
min

1≤i≤m
min

0≤s≤t
Y i,ε
s , max

1≤i≤m
Y i,ε
t

)
∈ (0, +∞)× (−∞, U ]

)
(4.4)

Next, we consider the collection of processes {Xi,∗
· : 1 ≤ i ≤ m}, which are defined for

i > 1 exactly as for i = 1, i.e Xi,∗
t = Y i,∗

t∧τi,∗ for τi,∗ = inf{s ≥ 0 : Y i,∗
s ≤ 0}, where each

Y i,∗
· is defined as

Y i,∗
t = Xi

0 +

(
ri −

σ2
1,1

2

)
t+ ρ̃1,iσ1,1W

0
t +

√
1− ρ̃2

1,iσ1,1W
i
t

for all t ≥ 0, with ρ̃1,i = ρ1,i
σ̃
σ1,1

for some σ̃ ∈ [σ2,1, σ1,1] (which will be chosen later) and

all i ∈ {2, ..., m}. Again, it is easy to check that the above processes are pairwise i.i.d
processes when the information contained in W 0

· , B
0
· and G is given. Thus, we can write

E
[
g
(
P
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

))]
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= E
[
Pm
(
X1,∗
t ∈ I |W 0

· , B
0
· , G

)]
= E

[
P
(
X1,∗
t ∈ I, X2,∗

t ∈ I, ..., Xm,∗
t ∈ I |W 0

· , B
0
· , G

)]
= P

(
X1,∗
t ∈ I, X2,∗

t ∈ I, ..., Xm,∗
t ∈ I

)
= P

((
min

1≤i≤m
min

0≤s≤t
Y i,∗
s , max

1≤i≤m
Y i,∗
t

)
∈ (0, +∞)× (−∞, U ]

)
. (4.5)

Then, (4.4) and (4.5) show that the result we want to prove has been reduced to the

convergence of

(
min

1≤i≤m
min

0≤s≤t
Y i,ε
s , max

1≤i≤m
Y i,ε
t

)
to

(
min

1≤i≤m
min

0≤s≤t
Y i,∗
s , max

1≤i≤m
Y i,∗
t

)
, in dis-

tribution as ε → 0+ (since the probability that any of the m minimums equals zero is
zero, as the minimum of any Gaussian process is always continuously distributed, while
Y i,ε
· is obviously Gaussian for any given path of σi,1· ).

Let now C ([0, t] ;Rm) be the classical Wiener space of continuous functions defined
on [0, t] and taking values in Rk (i.e the space of these functions equipped with the supre-

mum norm and the Wiener probability measure), and observe that min
1≤i≤m

pi

(
min

0≤s≤t
· (s)

)
defined on C ([0, t] ;Rm), where pi stands for the projection on the i-th axis, is a con-
tinuous functional. Indeed, for any two continuous functions f1, f2 in C ([0, t] ;Rm), we
have: ∣∣∣∣ min

1≤i≤m
pi

(
min

0≤s≤t
f1(s)

)
− min

1≤i≤m
pi

(
min

0≤s≤t
f2(s)

)∣∣∣∣ = |pi1 (f1(s1))− pi2 (f2(s2))|

for some s1, s2 ∈ [0, t] and 1 ≤ i1, i2 ≤ m, and without loss of generality we may assume
that the difference inside the last absolute value is nonnegative. Moreover we have:

pi1 (f1(s1)) = min
1≤i≤m

pi

(
min

0≤s≤t
f1(s)

)
≤ pi2 (f1(s2))

and thus we have:∣∣∣∣ min
1≤i≤m

pi

(
min

0≤s≤t
f1(s)

)
− min

1≤i≤m
pi

(
min

0≤s≤t
f2(s)

)∣∣∣∣ = pi1 (f1(s1))− pi2 (f2(s2))

≤ pi2 (f1(s2))− pi2 (f2(s2))

≤ |pi2 (f1(s2))− pi2 (f2(s2))|
≤ ‖f1 − f2‖C([0, t];Rm)

Obviously, max
1≤i≤m

pi (· (t)) defined on C ([0, t] ;Rm) is also continuous (as the maximum

of finitely many evaluation functionals). Therefore, our problem is finally reduced to

showing that
(
Y 1,ε
· , Y 2,ε

· , ..., Y m,ε
·

)
converges in distribution to

(
Y 1,∗
· , Y 2,∗

· , ..., Y m,∗
·

)
in

the space C ([0, t] ;Rm), as ε→ 0+.
We will now follow the standard way for showing convergence in distribution results

like the above: We will show first that a limit in distribution exists as as ε → 0+ by
using a tightness argument, and then we will try to characterize the limits of the finite

dimensional distributions. To show tightness of the laws of
(
Y 1,ε
· , Y 2,ε

· , ..., Y m,ε
·

)
for

ε ∈ R+, which implies the desired convergence in distribution, we recall a special case of

14



Theorem 7.2 in [7] for continuous processes, according to which it suffices to prove that
for a given η > 0, there exist some δ > 0 and N > 0 such that:

P
(∥∥∥(Y 1,ε

0 , Y 2,ε
0 , ..., Y m,ε

0

)∥∥∥
Rm

> N
)
≤ η (4.6)

and

P

(
sup

0≤s1,s2≤t, |s1−s2|≤δ

∥∥(Y 1,ε
s1 , Y

2,ε
s1 , ..., Y

m,ε
s1

)
−
(
Y 1,ε
s2 , Y

2,ε
s2 , ..., Y

m,ε
s2

)∥∥
Rm > η

)
≤ η (4.7)

for all ε > 0. (4.6) can easily be achieved for some N > 0 since
(
Y 1,ε

0 , Y 2,ε
0 , ..., Y m,ε

0

)
=(

X1
0 , X

2
0 , ..., X

m
0

)
, which is independent of ε and almost surely finite (the sum of the

probabilities that the norm of this vector belongs to [n, n+ 1] over n ∈ N is a convergent
series and thus, by Cauchy criteria, the same sum but for n ≥ N tends to zero as N tends
to infinity). For (4.7) now, observe that ‖·‖Rm can be any of the standard equivalent Lp

norms of Rm, and we choose it to be L∞. Then we have:

P

(
sup

0≤s1,s2≤t, |s1−s2|≤δ

∥∥(Y 1,ε
s1 , Y

2,ε
s1 , ..., Y

m,ε
s1

)
−
(
Y 1,ε
s2 , Y

2,ε
s2 , ..., Y

m,ε
s2

)∥∥
Rm > η

)

= P

(
∪mi=1{ sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y i,ε
s1 − Y

i,ε
s2

∣∣ > η}

)

≤
m∑
i=1

P

(
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y i,ε
s1 − Y

i,ε
s2

∣∣ > η

)

= mP

(
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y 1,ε
s1 − Y

1,ε
s2

∣∣ > η

)
(4.8)

and since it is well known that the Ito integral
∫ t

0 h
(
σ1,1
s
ε

)(√
1− ρ2

1dW
1
s + ρ1dW

0
s

)
can

be written as W̃∫ t
0 h

2

(
σ1,1
s
ε

)
ds

, where W̃· is another standard Brownian motion, by writing

∆W̃ h (s1, s2) for the difference W̃∫ s1
0 h2

(
σ1,1
s
ε

)
ds
− W̃∫ s2

0 h2

(
σ1,1
s
ε

) for all s1, s2 > 0 and by

denoting the maximum of h by M , we also have:

P

(
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y 1,ε
s1 − Y

1,ε
s2

∣∣ > η

)

= P

 sup
0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣∣∣∣
∫ s1

s2

r − h2
(
σ1,1
s
ε

)
2

 ds+
(

∆W̃ h (s1, s2)
)∣∣∣∣∣∣ > η


≤ P

 sup
0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣∣∣∣
∫ s1

s2

r − h2
(
σ1,1
s
ε

)
2

 ds

∣∣∣∣∣∣ > η

2


+P

(
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣∣∣
(
W̃∫ s1

0 h2

(
σ1,1
s
ε

)
ds
− W̃∫ s2

0 h2

(
σ1,1
s
ε

)
ds

)∣∣∣∣∣ > η

2

)
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≤ P
(
δ (r +M) >

η

2

)
+P

(
sup

0≤s3,s4≤M2t, |s3−s4|≤M2δ

∣∣∣(W̃s3 − W̃s4

)∣∣∣ > η

2

)
(4.9)

since
∣∣∣∫ ba h2

(
σ1,1
s
ε

)
ds
∣∣∣ ≤M2 |a− b| for all a, b ∈ R+. The first of the last two probabilities

is clearly zero for δ < η
2(r+M) , while the second one can also be made arbitrarily small

for small enough δ, since by a well known result about the modulus of continuity of a
Brownian motion (see [26]) the supremum within that probability converges almost surely

(and thus also in probability) to 0 as fast as M
√

2δ log
(

1
M2δ

)
. Plugging these in (4.8) we

deduce that (4.7) is also satisfied and we have the desired tightness result, which implies

that
(
Y 1,ε
· , Y 2,ε

· , ..., Y m,ε
·

)
converges in distribution to some limit

(
Y 1,0
· , Y 2,0

· , ..., Y m,0
·

)
.

To conclude our proof, we need to show that
(
Y 1,0
· , Y 2,0

· , ..., Y m,0
·

)
coincides with(

Y 1,∗
· , Y 2,∗

· , ..., Y m,∗
·

)
. Since both m-dimensional processes are uniquely determined by

their finite-dimensional distributions, and since evaluation functionals on C ([0, t] ;Rm)
preserve convergences in distribution (as continuous functionals), we only need to show
that for any fixed (i1, i2, ..., i`) ∈ {1, 2, ..., m}`, any fixed (t1, t2, ..., t`) ∈ (0, +∞)`, and
any fixed continuous and bounded function q : R` → R, for an arbitrary ` ∈ N, we have

E
[
q
(
Y i1,ε
t1

, Y i2,ε
t2

, ..., Y i`,ε
t`

)]
→ E

[
q
(
Y i1,∗
t1

, Y i2,∗
t2

, ..., Y i`,∗
t`

)]
as ε→ 0+. Due to the Dominated Convergence Theorem, the above follows if we are able
to show that

lim
ε→0+

E
[
q
(
Y i1,ε
t1

, Y i2,ε
t2

, ..., Y i`,ε
t`

)
|σi1,1· , σi2,1· , ..., σi`,1· , C

]
= lim

ε→0+
E
[
q
(
Y i1,∗
t1

, Y i2,∗
t2

, ..., Y i`,∗
t`

)
|σi1,1· , σi2,1· , ..., σi`,1· , C

]
P- almost surely. However, when the information contained in σi1,1· , σi2,1· , ..., σi`,1· and C
is given, both

(
Y i1,ε
t1

, Y i2,ε
t2

, ..., Y i`,ε
t`

)
and

(
Y i1,∗
t1

, Y i2,∗
t2

, ..., Y i`,∗
t`

)
have an `-dimensional

normal distribution. This means that given
(
σi1,1· , σi2,1· , ..., σi`,1·

)
and C, we only need to

show that as ε→ 0+, the mean vector and the covariance matrix of
(
Y i1,ε
t1

, Y i2,ε
t2

, ..., Y i`,ε
t`

)
converge to the mean vector and the covariance matrix of

(
Y i1,∗
t1

, Y i2,∗
t2

, ..., Y i`,∗
t`

)
re-

spectively. Given
(
σi1,1· , σi2,1· , ..., σi`,1·

)
, the information contained in C, and a k ∈

{1, 2, ..., `}, the k-th coordinate of the mean vector of
(
Y i1,ε
t1

, Y i2,ε
t2

, ..., Y i`,ε
t`

)
is equal to

Xik
0 +

∫ tk
0

rik − h2

(
σ
ik,1
s
ε

)
2

 ds, and by the positive recurrence property it converges as

ε → 0+ to Xik
0 +

(
rik −

σ2
1,1

2

)
tk (since the volatility processes have all the same coeffi-

cients and thus the same stationary distributions), which is the k-th coordinate of the

mean vector of
(
Y i1,∗
t1

, Y i2,∗
t2

, ..., Y i`,∗
t`

)
. Now we only need to obtain the corresponding
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convergence result for the covariance matrices of our processes. For some 1 ≤ p, q ≤ `,

given
(
σi1,1· , σi2,1· , ..., σi`,1·

)
and the information contained in C, the covariance of Y

ip,ε
tp

and Y
iq ,ε
tq is equal to

(
ρ1,ipρ1,iq + δip,iq

√
1− ρ1,ip

√
1− ρ1,iq

) ∫ tp∧tq

0
h
(
σ
ip,1
s
ε

)
h
(
σ
iq ,1
s
ε

)
ds

while the covariance of Y
ip,∗
tp and Y

iq ,∗
tq is equal to(

ρ̃1,ip ρ̃1,iq + δip,iq

√
1− ρ̃2

1,ip

√
1− ρ̃2

1,iq

)
σ2

1,1tp ∧ tq.

This means that for ip = iq = i ∈ {1, 2, ..., m} we need to show that∫ tp∧tq

0
h2
(
σi,1s
ε

)
ds→ σ2

1,1tp ∧ tq

as ε→ 0+, while for ip 6= iq we need to show that:

ρ1,ipρ1,iq

∫ tp∧tq

0
h
(
σ
ip,1
s
ε

)
h
(
σ
iq ,1
s
ε

)
ds→ ρ̃1,ip ρ̃1,iqσ

2
1,1tp ∧ tq

as ε→ 0+, where ρ̃1,iσ1,1 = ρ1,iσ̃ for all i ≤ m. Both convergence results follow from the

positive recurrence property for σ̃ =
√

E [h (σip,iq ,1,∗)h (σip,iq ,2,∗)], which does not depend
on ip and iq since the volatility processes have all the same coefficients and thus the same
joint stationary distributions.

It remains to show that σ̃ ∈ [σ2,1, σ1,1]. The upper bound can be obtained by a simple
Cauchy-Schwartz inequality, i.e

σ̃ =
√

E [h (σ1,2,1,∗)h (σ1,2,2,∗)]

≤
√√

E [h2 (σ1,2,1,∗)]
√
E [h2 (σ1,2,2,∗)]

=
√
σ1,1 × σ1,1

= σ1,1 (4.10)

For the lower bound, considering our volatility processes for i = 1 and i = 2 started from
their 1-dimensional stationary distributions independently, we have for any t, ε ≥ 0

E
[

1

t

∫ t

0
h
(
σ1,1
s
ε

)
h
(
σ2,1
s
ε

)
ds

]
=

1

t

∫ t

0
E
[
h
(
σ1,1
s
ε

)
h
(
σ2,1
s
ε

)]
ds

=
1

t

∫ t

0
E
[
h
(
σ1,1
s
ε

)]
E
[
h
(
σ2,1
s
ε

)]
ds

+
1

t

∫ t

0
E
[(
h
(
σ1,1
s
ε

)
− E

[
h
(
σ1,1
s
ε

)])(
h
(
σ2,1
s
ε

)
− E

[
h
(
σ2,1
s
ε

)])]
ds

= σ2
2,1
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+
1

t

∫ t

0
E
[
E
[(
h
(
σ1,1
s
ε

)
− E

[
h
(
σ1,1
s
ε

)])(
h
(
σ2,1
s
ε

)
− E

[
h
(
σ1,1
s
ε

)])
|B0
·

]]
ds

= σ2
2,1 +

1

t

∫ t

0
E
[
E
[(
h
(
σ1,1
s
ε

)
− σ2,1

)
|B0
·

]2
]
ds

≥ σ2
2,1 (4.11)

since σ1,1
· and σ2,1

· are identically distributed, and also i.i.d when B0
· is given. Taking

ε→ 0+ on (4.11) and recalling the positive recurrence property, the definition of σ̃, and the
Dominated Convergence Theorem on the LHS (since the quantity inside the expectation
there is bounded by the square of an upper bound of h), we obtain the desired. The proof
of the Theorem is now complete.

Remark 4.2. A few comments need to be made about the bounds we have derived for σ̃:

1. The upper bound σ̃ ≤ σ1,1 is needed to ensure that ρ̃1,1 ≤ 1, so X1,∗
· is a real-valued

stochastic process. The above proof shows that this bound is only attainable when
σi,j,1,∗ = σi,j,2,∗ for all i and j with i 6= j, which happens only when all the assets
share a common stochastic volatility (i.e ρ2 = 1).

2. The lower bound σ̃ ≥ σ2,1 can also be shown to be unattainable in general, which

means that the conditional (given
(
W 0
· , B

0
· , G

)
) density ofX1,∗

t on (0, +∞) does not
coincide with the weak limit derived in the previous section, and as we mentioned

earlier, this shows that convergence of P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
as ε → 0+ better

than in distribution cannot be expected. Indeed, if we choose h such that its
composition h̃ with the square function is strictly increasing and convex, and if g is
chosen to be a square root function (thus we are in the CIR volatility case, which
is the most common), for any α > 0 we have

1

t

∫ t

0
E
[
E
[(
h
(
σ1,1
s
ε

)
− σ2,1

)
|B0
·

]2
]
ds

= E
[

1

t

∫ t

0

(
E
[
h̃
(√

σ1,1
s
ε

)
|B0
·

]
− σ2,1

)2
ds

]
≥ α2E

[
1

t

∫ t

0
I
σB

0,h
s
ε
≥α+σ2,1

ds

]
(4.12)

where σB
0,h

s := E
[
h̃
(√

σ1,1
s

)
|B0
·

]
≥ h̃

(
σB

0

s

)
for σB

0

s := E
[√

σ1,1
s |B0

·

]
. Thus,

(4.12) implies

1

t

∫ t

0
E
[
E
[(
h
(
σ1,1
s
ε

)
− σ2,1

)
|B0
·

]2
]
ds

≥ α2E
[

1

t

∫ t

0
I
σB

0
s
ε
≥h̃−1(α+σ2,1)

ds

]
(4.13)

Let now σρt be the solution to the SDE

σρt = σB
0

0 +
1

2

∫ t

0

(
κθ − v2

4

)
1

σρs
ds+

κ

2

∫ t

0
σρsds+

ρ2v

2
B0
s
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The above can easily be shown to be the square root of a CIR process having the
same mean-reversion and vol-of-vol as σ1,1 and a different stationary mean, which
however satisfies the Feller condition for not hitting zero. If for some t1 > 0 we have
σρt1 > σB

0

t1 , we consider t0 = inf{s ≤ t1 : σρs = σB
0

s } which is obviously non-negative.

Then, since E
[

1√
σ1,1
s

|B0
·

]
≥ 1

E
[√

σ1,1
s |B0

·

] = 1

σB0
s

we have

σB
0

t1 = σB
0

t0 +
1

2

∫ t1

0

(
κθ − v2

4

)
E

[
1√
σ1,1
s

|B0
·

]
ds

−κ
2

∫ t1

0
σB

0

s ds+
ρ2v

2

(
B0
t1 −B

0
t0

)
≥ σB

0

t0 +
1

2

∫ t1

0

(
κθ − v2

4

)
1

σB0

s

ds

−κ
2

∫ t1

0
σB

0

s ds+
ρ2v

2

(
B0
t1 −B

0
t0

)
≥ σρt0 +

1

2

∫ t1

0

(
κθ − v2

4

)
1

σρs
ds

−κ
2

∫ t1

0
σB

ρ

s ds+
ρ2v

2

(
B0
t1 −B

0
t0

)
= σρt1

which is a contradiction. Thus σρs ≤ σB
0

s for all s ≥ 0, which can be plugged in
(4.13) to give

1

t

∫ t

0
E
[
E
[(
h
(
σ1,1
s
ε

)
− σ2,1

)
|B0
·

]2
]
ds

≥ α2E
[

1

t

∫ t

0
Iσρs

ε
≥h̃−1(α+σ2,1)ds

]
(4.14)

Finally, by the positive recurrence of σρ· (which is the root of a CIR process, the
ergodicity of which has been discussed in [9]), the RHS of the above converges to

α2P
(
σρ,∗ ≥ h̃−1 (α+ σ2,1)

)
as ε → 0+, where σρ,∗ has the stationary distribution

of σρ· . Thus, since the square of σρ· satisfies Feller’s boundary condition, the RHS of
(4.14) converges to something strictly positive as ε → 0+, which proves our claim.
Of course, the above argument fails if ρ2 = 0 (σρ· becomes deterministic), and in
this case we can easily check that the LHS of (4.14) tends to zero, which implies
σ̃ = σ2,1. Then we can hope for better convergence results for our model. However,
ρ2 = 0 means that we assume uncorrelated volatilities, while interdependence is the
main feature that makes our model realistic.

Remark 4.3. In the case where the coefficients are non-constant but independently chosen
from some distribution for each assset price, for each pair (i, j) with i 6= j, the correlation
between the i-th and the j-th asset prices will converge (as ε→ 0+) to something contain-
ing σ̃i,j :=

√
E [h (σi,j,1,∗)h (σi,j,2,∗) | C], which will be a random quantity depending on

both i and j. However, since we assume correlated volatilities, we are unable to express
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this quantity as σ̃iσ̃j for some σ̃i and σ̃j . This means that we are unable to achieve a limit
of the desired form (as in (4.2), with each Xi

· being a logarithmicaly scaled Black-Scholes
price process, driven by W i

· and W 0
· , and killed when it hits zero), since the correlation

between Xi,∗
· and Xj,∗

· in that setting has always the form cicj for some ci, ci ∈ [0, 1], for
any i and j with i 6= j.

Remark 4.4. To obtain our convergence result we have assumed that the function h is
bounded, and that g must satisfy the positive recurrence property. This means that the
result we have at this stage may not be extendable to the classical Heston model, or to
models that are based on CIR volatility processes which do not satisfy the conditions of
Theorem 2.4. However, it covers a very wide range of stochastic volatility models which
can capture many important features of large portfolios that constant volatility models
cannot.

Remark 4.5. Even though we do not have any better approximation at this stage, which
would have been great for the practical implementation of our model, the convergence
result we have just proven is an important first step. Our convergence result shows
also that quite accurate results can be obtained in risk management of large portfolios
by using a very simple constant volatility model (like the one studied in [6], but with
random coefficients), provided that the volatilities of the assets are fast mean-reverting
(which is frequently observed in markets). The coefficients can be estimated by solving
the corresponding stochastic boundary-initial value problem backwards, and by using
regression against certain known quantities.

5 Fast mean-reversion - small vol-of-vol: A better model

In order to deal with the disadvantages of the model studied in the previous three sections,
we will now study a different setting, where the vol-of-vol of each volatility process is
allowed to be small compared to the square root of the mean-reversion coefficient. This
time, the i-th logarithmicaly scaled asset price is assumed to evolve according to the
system

dXi,ε
t =

(
ri − h2(σi,εt )

2

)
dt+ h(σi,εt )

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

dσi,εt = κi
ε (θi − σi,εt )dt+ ξig

(
σi,εt

)(√
1− ρ2

2,idB
i
t + ρ2,idB

0
t

)
, t ≥ 0

Xi,ε
t = 0, t > Ti := inf{s ≥ 0 : Xi,ε

s ≤ 0}
(Xi,ε

0 , σi,ε0 ) = (xi, σi),
(5.1)

where the function g is assumed to be generally continuous with at most linear growth
(to include both the Ornstein-Uhlenbeck and the CIR volatility case). We also assume
that σi, ξi, θi, κi are bounded random variables with 0 < κi ≤ 1 (for simplicity, since the
size of the mean-reversion coefficients is measured by ε), for every i ∈ N. Under these
assumptions, we will obtain a convergence result which is stronger than the one we had in
the fast mean-reversion - large vol-of-vol setting, and also when the Brownian motions W 0

·
and B0

· describing the impact of the Market on each asset are allowed to be correlated.
Moreover, assuming that B0

· and W 0
· are uncorrelated and imposing better regularity on

g, we will see that we are able to obtain a correction of order O (
√
ε) in a weak sense,

even though this will turn out to be practically useless. The usefulness of this setting
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will become clear in the next section, where we will discuss the rate of convergence of
probabilities of the form (1.3).

The main feature of the model we are now studying is that each volatility process
σi,ε· converges in Lp to the constant value θi as ε → 0+, for any p > 0, which is a major
advantage. Indeed, the reason for having very weak convergence results in the fast mean-
reversion - large vol-of-vol setting was the fact that the limiting quantities σ1,1, σ2,1 and σ̃
did not coincide, while the corresponding limits do coincide when the volatilities converge
in some strong sense to constant values, as we can easily check.

We start by establishing the convrgence of each volatility to its mean as ε → 0+.
This is given in the following technical lemma, the proof of which can be found in the
Appendix

Lemma 5.1. Suppose that g is continuous and satisfies |g(z)| ≤ |z|+ cg for some cg > 0
and for all z ∈ R, and that σi, ξi, θi, κi are bounded random variables. Then, for any
t ≥ 0 and p ≥ 1, it holds that σi,εs → θi in Lp (Ω× [0, t]), as ε→ 0+.

The above is a nice convergence result, but in order to obtain a correction of some
order, we need some result about the rate of convergence. This is given in the next
lemma, the proof of which has also been put in the Appendix

Lemma 5.2. Let g be a C1 function such that both g and (g2)′ are bounded, h be an
analytic function, and σ1, ξ1, θ1, κ1 be bounded random variables. Moreover, suppose that
the sequence

{
h(n) (θ1) : n ∈ N

}
is bounded by some Mh > 0 for all the possible values of

θ1, and that κ1 > cκ > 0 P-almost surely, where Mh and cκ are deterministic constants.
Let also {Zs : s ≥ 0} be a C1 path such that for any t > 0, both Z and Z ′ are bounded in
[0, t] by some deterministic constant Mz,t > 0. Then, for any sequence εn → 0+, there
exists a subsequence εkn such that for almost all t ≥ 0 we have

1

εkn

∫ t

0

(
h
(
σ

1,εkn
s

)
− h (θ1)

)2
Zsds →

Z0

κ1

∫ σ1

θ1

(h (y)− h (θ1))2

y − θ1
dy

+
ξ2

1

2κ1

(
h′ (θ1) g (θ1)

)2 ∫ t

0
Zsds (5.2)

and

1

εkn

∫ t

0

(
h
(
σ

1,εkn
s

)
− h (θ1)

)
Zsds →

Z0

κ1

∫ σ1

θ1

h (y)− h (θ1)

y − θ1
dy

+
ξ1

κ1
h′ (θ1) g (θ1)

∫ t

0
ZsdB̃

1
s

+
ξ2

1

4κ1
h′′ (θ1) g2 (θ1)

∫ t

0
Zsds (5.3)

in L2 (Ω) as n→ +∞, where B̃1
s stands for the standard Brownian Motion

√
1− ρ2

2,1B
1
t +

ρ2,1B
0
t . If we replace the boundedness of g by linear growth, the same results hold when

h is a polynomial.

We proceed now to our first main result, which is the convergence of our system
as ε → 0+. As in previous sections, we denote by Cεi the coefficient vector of the i-th
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asset price process, by Eσ,C the expectation given the volatility paths and the coefficient
vectors, and by L2

σ,C the corresponding L2 norm. Then, as in the large vol-of-vol setting,
we need to approximate the random mass of non-defaulted assets when the market factors
are given, i.e

P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
= E

[∫ +∞

0

∫ +∞

0
uCε1 (t, x, y) dxdy |W 0

· , B
0
· , G

]
where we have

uCε1 (t, x, y) = pεt
(
y|B0

· ,G
)
E
[
u
(
t, x,W 0

· ,G, Cε1, h
(
σ1,ε
.

))
|W 0
· , σ

1,ε
t = y,B0

· , C
ε
1,G
]

and where uε (t, x) := u
(
t, x,W 0

· ,G, Cε1, h
(
σ1,ε
.

))
solves the SPDE

uε(t, x) = u0(x)−
∫ t

0

r − h2
(
σ1,ε
s

)
2

uεx(s, x)ds

+

∫ t

0

h2
(
σ1,ε
s

)
2

uεxx(s, x)ds− ρ1,1

∫ t

0
h
(
σ1,ε
s

)
uεx(s, x)dW 0

s (5.4)

and satisfies also the identity

‖uε(t, ·)‖2L2(R+) +
(
1− ρ2

1,1

) ∫ t

0
h2
(
σ1,ε
t

)
‖uεx(s, ·)‖2L2(R+) ds = ‖u0‖2L2(R+) . (5.5)

for all t ≥ 0, P - almost surely. Assuming again that W 0
· and B0

· are uncorrelated and
that c < h2 (x) < C for some C, c > 0 and all x > 0, we can use (5.5) to show that the L2

σ

and L2
σ

(
Ω× [0, T ] ;H1

0 (R+)
)

norms of uε are bounded in ε. This implies the existence
of a weak limit u of uεkn for some subsequence {εkn : n ∈ N} of an arbitrary sequence
εn → 0+, in all these reflexive spaces. Then, by following exactly the same steps as in
the proof of Theorem 3.1, but with

∫ t
0 σ

1,1
s
ε

under the large vol-of-vol setting replaced by∫ t
0 σ

1,ε
s under the small vol-of-vol setting, we can obtain a similar characterization for the

weak limits u

Theorem 5.3. Any weak limit u of uε in L2(Ω × [0, T ] ;H1
0 (R+)), in any sequence

εn → 0+ for which we have convergence, is equal to the unique solution to the SPDE

u(t, x) = u0(x)−
(
r − h2 (θ1)

2

)∫ t

0
ux(s, x)ds

+
h2 (θ1)

2

∫ t

0
uxx(s, x)ds− ρ1,1h (θ1)

∫ t

0
ux(s, x)dW 0

s (5.6)

in that space. Thus, the uniqueness of solutions implies that we have convergence to u as
ε→ 0+.

Again, there are some difficulties (mainly the lack of uniform convergence of σ1,ε
· to

θ1) which do not allow us to obtain strong convergence of uε in L2
σ(Ω× [0, T ] ;H1

0 (R+)),
while the independence between W 0

· and B0
· is a non-realistic assumption we would like

to get rid of. Fortunately, under this better setting, we can show strong convergence of
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the mass of uε over R+ in L2, just by assuming that h possesses a few nice properties,
without the need to assume that W 0

· and B0
· are uncorrelated. This is possible because

when h has these properties, we are able to show strong convergence of the antiderivative
v0,ε :=

∫ +∞
· uε(y)dy in L2(Ω × [0, T ] ;H1 (R+)). This result is given in the following

Theorem

Theorem 5.4. Suppose that h is differentiable and that both h and h′ have a polynomial
growth. Then, v0,ε converges strongly to v0 in L2(Ω × [0, T ] ;H1 (R+)) as ε → 0+, for
any T > 0, where v0 is defined as v0(t, x) =

∫ +∞
x u(t, y)dy for all t, x ≥ 0

Proof. We can easily check that v0,ε and v0 are the unique solutions to the SPDEs (5.4)
and (5.6) respectively, in the space L2(Ω × [0, T ] ;H2 (R+)), under the boundary con-
ditions v0,ε

x ∈ L2(Ω × [0, T ] ;H1
0 (R+)) and v0

x ∈ L2(Ω × [0, T ] ;H1
0 (R+)) respectively.

Subtracting the SPDEs satisfied by v0,ε and v0 and setting vd,ε = v0− v0,ε, we can easily
verify that

vd,ε (t, x) = −1

2

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
v0,ε
x (s, x) ds

+

∫ t

0

(
r − h2 (θ1)

2

)
vd,εx (s, x) ds

+
1

2

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
v0,ε
xx (s, x) ds

+

∫ t

0

h2 (θ1)

2
vd,εxx (s, x) ds

+ρ1,1

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)
v0,ε
x (s, x) dW 0

s

+ρ1,1

∫ t

0
h (θ1) vd,εx (s, x) dW 0

s

and we can use Ito’s formula for the L2 norm (see [21]) on the above to obtain

Eσ,C
[∫

R+

(
vd,ε (t, x)

)2
dx

]
= −

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
×Eσ,C

[∫
R+

v0,ε
x (s, x) vd,ε (t, x) dx

]
ds

+2

(
r − h2 (θ1)

2

)
×
∫ t

0
Eσ,C

[∫
R+

vd,εx (s, x) vd,ε (t, x) dx

]
ds

−
∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
×Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

−
∫ t

0
h2 (θ1)Eσ,C

[∫
R+

(
vd,εx (s, x)

)2
dx

]
ds
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+ρ2
1,1

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2
×Eσ,C

[∫
R+

(
v0,ε
x (s, x)

)2
dx

]
ds

+2ρ2
1,1h (θ1)

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)
×Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

+ρ2
1,1

∫ t

0
h2 (θ1)Eσ,C

[∫
R+

(
vd,εx (s, x)

)2
dx

]
ds

+N(t, ε) (5.7)

where N(t, ε) is some noise due to the correlation between B0
· and W 0

· , with E [N(t, ε)] = 0

Next, by (5.5) we have
∥∥∥v0,ε

x (s, ·)
∥∥∥
L2
σ,C(Ω×R+)

= ‖uε(s, ·)‖L2
σ,C(Ω×R+) ≤ ‖u0(·)‖L2(Ω×R+) for

all s ≥ 0. Using this, we can obtain the following estimate∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
Eσ,C

[∫
R+

v0,ε
x (s, x) vd,ε (t, x) dx

]
ds

≤
∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

) ∥∥v0,ε
x (s, ·)

∥∥
L2
σ,C(Ω×R+)

∥∥∥vd,ε(s, ·)∥∥∥
L2
σ,C(Ω×R+)

ds

≤ ‖u0(·)‖L2(Ω×R+)

√∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2
ds

√∫ t

0
‖vd,ε(s, ·)‖2L2

σ,C(Ω×R+) ds

≤ 1

2
‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2
ds

+
1

2

∫ t

0

∥∥∥vd,ε(s, ·)∥∥∥2

L2
σ,C(Ω×R+)

ds (5.8)

and in the same way∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

≤ ‖u0(·)‖L2(Ω×R+)

√∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2
ds

√∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds

≤ 1

2η
‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2
ds

+
η

2

∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds (5.9)

and ∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)
Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

≤ ‖u0(·)‖L2(Ω×R+)

√∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2
ds

√∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds
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≤ 1

2η
‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2
ds

+
η

2

∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds (5.10)

for some η > 0. Moreover, we have the estimate∫ t

0
Eσ,C

[∫
R+

vd,εx (s, x) vd,ε (t, x) dx

]
ds

≤
∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥
L2
σ,C(Ω×R+)

∥∥∥vd,ε(s, ·)∥∥∥
L2
σ,C(Ω×R+)

ds

≤

√∫ t

0
‖vd,ε(s, ·)‖2L2

σ,C(Ω×R+) ds

√∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds

≤ 1

2η

∫ t

0

∥∥∥vd,ε(s, ·)∥∥∥2

L2
σ,C(Ω×R+)

ds+
η

2

∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds (5.11)

and by using
∥∥∥v0,ε

x (s, ·)
∥∥∥
L2
σ,C(Ω×R+)

≤ ‖u0(·)‖L2(Ω×R+) again, we also obtain

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2 Eσ,C [∫
R+

(
v0,ε
x (s, x)

)2
dx

]
ds

≤ ‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2
ds. (5.12)

Plugging now (5.8), (5.9), (5.10), (5.11) and (5.12) in (5.7), and taking then η to be
sufficiently small, we get the estimate∥∥∥vd,ε(t, ·)∥∥∥2

L2
σ,C(Ω×R+)

+m

∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds

≤M
∫ t

0

∥∥∥vd,ε(s, ·)∥∥∥2

L2
σ,C(Ω×R+)

ds+N(t, ε) +MH(ε) (5.13)

for all t ∈ [0, T ], where H(ε) =
∫ T

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2
ds+

∫ T
0

(
h
(
σ1,ε
s

)
− h (θ1)

)2
ds,

and where M,m > 0 are constants independent of the fixed volatility path. Taking
expectations on the above to average over all volatility paths, we find that∥∥∥vd,ε(t, ·)∥∥∥2

L2(Ω×R+)
+m

∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2(Ω×R+)
ds

≤M
∫ t

0

∥∥∥vd,ε(s, ·)∥∥∥2

L2(Ω×R+)
ds+ME [H(ε)] (5.14)

and using Gronwall’s inequality on the above, we finally obtain∥∥∥vd,ε(t, ·)∥∥∥2

L2(Ω×R+)
+m

∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2(Ω×R+)
ds ≤M ′E [H(ε)] (5.15)
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for some M ′ > 0, with E [H(ε)] → 0+ as ε → 0+ as we can easily show. Indeed, if
h(x) ≤ xm + ch,1 and h′(x) ≤ xm + ch,2 for all x ≥ 0, by the mean value theorem we have

E
[∫ T

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2
ds

]
= E

[∫ T

0
h′ (σ∗,εs )

(
σ1,ε
s − θ1

)2
ds

]
≤ ch,2E

[∫ T

0

(
σ1,ε
s − θ1

)2
ds

]
+E

[∫ T

0

(
σ1,ε
s − θ1

)2 (
σ1,ε
s

)m
ds

]
≤ ch,2E

[∫ T

0

(
σ1,ε
s − θ1

)2
ds

]

+

√
E
[∫ T

0

(
σ1,ε
s

)2m
ds

]

×

√
E
[∫ T

0

(
σ1,ε
s − θ1

)4
ds

]
with the RHS of the last tending to zero by Lemma 5.1, and in the same way we can

show that E
[∫ T

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2
ds

]
tends also to zero (since

(
h2
)′

= 2hh′ has also

a polynomial growth). The proof of the Theorem is now complete.

Remark 5.5. By Morrey’s inequality in dimension 1 (see [8]) and the above result, we
can easily obtain the convergence of v0,ε(·, 0) to v0(·, 0) in L2 (Ω× [0, T ]) as ε → 0+.
Taking expectations given

(
W 0
· , B

0
· , G

)
(i.e averaging over the volatility path and the

vector C ′1, we get the strong convergence result for the masses of non-defaulted assets.
Also, under the appropriate regularity conditions on h and g, by Lemma 5.2 we have that
E [H(ε)] = O(ε), so (5.15) implies that the rate of the above convergence is

√
ε.

We continue now with the study of the existence of a correction of some order for uε.
For this purpose, we study the asymptotic behaviour of v1,ε := vd,ε√

ε
= v0,ε−v0

√
ε

. Dividing the

estimate (5.15) in the previous proof by ε, since Lemma 5.2 implies that E [H(ε)] = O(ε)
(under the appropriate regularity conditions on h and g), we find that

∥∥v1,ε(t, ·)
∥∥2

L2(Ω×R+)
+m

∫ t

0

∥∥v1,ε
x (s, ·)

∥∥2

L2(Ω×R+)
ds ≤M ′′ (5.16)

for some M ′′ > 0 and all t, ε > 0. This implies that for any sequence {εn : n ∈ N},
there exists a subsequence {εkn : n ∈ N} such that v1,εkn converges weakly to some v1

in L2([0, T ] × Ω;H1 (R+)) as n → +∞, for any T > 0. Below we will show that the
weak limit v1 is always a solution to an SPDE, but since we will not prove convergence of
second order derivatives, the Neumann boundary condition satisfied by v1,εkn will not be
established in the limit. This means that we are currently unable to show uniqueness of
weak solutions to the limiting SPDE, and thus uniqueness of weak limits v1. Therefore,
we see that even in this small vol-of-vol setting, at this point we cannot hope for good
high order corrections, like the ones established in [9] for the prices of vanilla options.
Moreover, to prove the above weak convergence result, we need to assume again that
W 0
· and B0

· are uncorrelated, which is not a reallistic assumption as we have already
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mentioned. However, we will see in the next section that under certain circumstances,
by using 5.5 we are able to estimate the exact rate of convergence of probabilities of the
form (1.3), even when W 0

· and B0
· are correlated, something we couldn’t do in the fast

mean-reversion - large vol-of-vol setting. We close this section by proving the Theorem
which characterizes the weak limits v1

Theorem 5.6. Suppose that g is a C1 function such that
(
g2
)′

is bounded, and that h

is an analytic function such that both
{
h(n) (θ1) : n ∈ N

}
and

{(
h2
)(n)

(θ1) : n ∈ N
}

are

bounded by a deterministic constant. Suppose also that either g is bounded or h is a
polynomial, and that W 0

· and B0
· are uncorrelated. Then, the weak limit v1 of v1,εkn in

L2([0, T ]× Ω;H1 (R+)) is a weak solution to the SPDE

v1 (t, x) = −
∫ t

0

(
r − h2 (θ1)

2

)
v1
x (s, x) ds

+

∫ t

0

h2 (θ1)

2
v1
xx (s, x) ds

−
∫ t

0
ρ1,1h (θ1) v1

x (s, x) dW 0
s

in that space.

Proof. The regularity we have assumed here allows us to apply Lemma 5.2 whenever we
need it (including the proof of estimate (5.16) earlier, which gives the existence of weak
limits). As in the proof of Theorem 5.4, we have that vd,εkn = v0,εkn − v0 satisfies

vd,εkn (t, x) = −1

2

∫ t

0

(
h2
(
σ

1,εkn
s

)
− h2 (θ1)

)
v

0,εkn
x (s, x) ds

+

∫ t

0

(
r − h2 (θ1)

2

)
v
d,εkn
x (s, x) ds

+
1

2

∫ t

0

(
h2
(
σ

1,εkn
s

)
− h2 (θ1)

)
v

0,εkn
xx (s, x) ds

+

∫ t

0

h2 (θ1)

2
v
d,εkn
xx (s, x) ds

+ρ1,1

∫ t

0

(
h
(
σ

1,εkn
s

)
− h (θ1)

)
v

0,εkn
x (s, x) dW 0

s

+ρ1,1

∫ t

0
h (θ1) v

d,εkn
x (s, x) dW 0

s

so dividing by
√
εkn we find

v1,εkn (t, x) = − 1

2
√
εkn

∫ t

0

(
h2
(
σ

1,εkn
s

)
− h2 (θ1)

)
v

0,εkn
x (s, x) ds

+

∫ t

0

(
r − h2 (θ1)

2

)
v

1,εkn
x (s, x) ds

+
1

2
√
εkn

∫ t

0

(
h2
(
σ

1,εkn
s

)
− h2 (θ1)

)
v

0,εkn
xx (s, x) ds
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+

∫ t

0

h2 (θ1)

2
v

1,εkn
xx (s, x) ds

+
ρ1,1√
εkn

∫ t

0

(
h
(
σ

1,εkn
s

)
− h (θ1)

)
v

0,εkn
x (s, x) dW 0

s

+ρ1,1

∫ t

0
h (θ1) v

1,εkn
x (s, x) dW 0

s (5.17)

for any t ∈ [0, T ]. We test now the above against a smooth and compactly supported

function f , and a W 0
· -measurable random variable Z ∈ L2 (Ω), with Z = E [Z]+

∫ T
0 zsdW

0
s

for some smooth process z· whose derivatives have bounded moments in [0, T ]. This way
we obtain

Eσ
[
Z

∫
R+

v1,εkn (t, x) f(x)dx

]
=

1

2
√
εkn

∫ t

0

(
h2
(
σ

1,εkn
s

)
− h2 (θ1)

)
Eσ
[
Z

∫
R+

v0,εkn (s, x) f ′(x)dx

]
ds

−
∫ t

0

(
r − h2 (θ1)

2

)
Eσ
[
Z

∫
R+

v1,εkn (s, x) f ′(x)dx

]
ds

+
1

2
√
εkn

∫ t

0

(
h2
(
σ

1,εkn
s

)
− h2 (θ1)

)
Eσ
[
Z

∫
R+

v0,εkn (s, x) f ′′(x)dx

]
ds

+

∫ t

0

h2 (θ1)

2
Eσ
[
Z

∫
R+

v1,εkn (s, x) f ′′(x)dx

]
ds

− ρ1,1√
εkn

∫ t

0

(
h
(
σ

1,εkn
s

)
− h (θ1)

)
Eσ
[
zs

∫
R+

v0,εkn (s, x) f ′(x)dx

]
ds

−ρ1,1

∫ t

0
h (θ1)Eσ

[
zs

∫
R+

v1,εkn (s, x) f ′(x)dx

]
ds (5.18)

for any t ∈ [0, T ].
Observe now that for g ∈ {h, h2}, V· ∈ {Z, z·} and k ∈ N it holds that

1
√
εkn

∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)
Eσ
[
Vs

∫
R+

v0,εkn (s, x) f (k)(x)dx

]
ds

=

∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)
Eσ
[
Vs

∫
R+

v1,εkn (s, x) f (k)(x)dx

]
ds

+
1
√
εkn

∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)
Eσ
[
Vs

∫
R+

v0 (s, x) f (k)(x)dx

]
ds

(5.19)

where for any
(
B0
· , B

1
·
)

- measurable random variable U which is bounded by some
MU > 0, by using standard norm estimates and (5.16) we have∣∣∣∣E [U ∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)
Eσ
[
Vs

∫
R+

v1,εkn (s, x) f (k)(x)dx

]
ds

]∣∣∣∣
≤
∥∥∥f (k)

∥∥∥
L2(R+)

sup
0≤s≤T

‖Vs‖L2(Ω)
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×E
[∫ t

0
|U |
∣∣∣g (σ1,εkn

s

)
− g (θ1)

∣∣∣ ∥∥v1,εkn (s, ·)
∥∥
L2
σ(Ω×R+)

ds

]
≤
∥∥∥f (k)

∥∥∥
L2(R+)

sup
0≤s≤T

‖Vs‖L2(Ω)

×MU

√
E
[∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)2
ds

]√∫ t

0
‖v1,εkn (s, ·)‖2L2(Ω×R+) ds

≤
√
tM ′′MU

∥∥∥f (k)
∥∥∥
L2(R+)

sup
0≤s≤T

‖Vs‖L2(Ω)

√
E
[∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)2
ds

]
which tends to zero by Lemma 5.1, in a subsequence {εk′n : n ∈ N} of {εkn : n ∈ N}.
Thus, since bounded random variables are dense in L2 (Ω), we have that the first term in
the RHS of (5.19) tends to zero weakly in L2 (Ω) (where we average over all the volatility
paths) and for almost all t > 0. Moreover, since v0 is bounded by 1 we have

Eσ
[
Vs

∫
R+

v0 (s, x) f (k)(x)dx

]
≤
∥∥∥f (k)

∥∥∥
L1(R+)

sup
0≤s≤T

‖Vs‖L1(Ω)

for any s ∈ [0, T ], while we can test the SPDE satisfied by v0 against f (k) and V· to show
that the derivative of the LHS of the above is a linear combination of terms of the same
form, which means that this derivative is also bounded. Thus, by Lemma 5.2 we have
that the second term in the RHS of (5.19), i.e

1
√
εkn

∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)
Eσ
[
Vs

∫
R+

v0 (s, x) f (k)(x)dx

]
ds

=
√
εkn

1

εkn

∫ t

0

(
g
(
σ

1,εkn
s

)
− g (θ1)

)
Eσ
[
Vs

∫
R+

v0 (s, x) f (k)(x)dx

]
ds,

tends also to zero in L2 (Ω), for almost all t > 0, in a further subsequence {εk′′n : n ∈ N}
of {εk′n : n ∈ N}. Therefore, in this subsequence, the LHS of (5.19) tends to zero weakly
in L2 (Ω), for almost all t > 0.

Next, by our weak convergence result, for any g ∈ {h, h2}, V· ∈ {Z, z·} and k ∈ N, it
holds that ∫ t

0
g (θ1)Eσ

[
Vs

∫
R+

v1,εkn (s, x) f (k)(x)dx

]
ds

−→
∫ t

0
g (θ1)Eσ

[
Vs

∫
R+

v1 (s, x) f (k)(x)dx

]
ds

weakly in L2 (Ω) and for all t ∈ [0, T ], as n → +∞. Thus, by recalling the convergence
of the LHS of (5.19) to zero as well, we find that the RHS of (5.18) converges weakly in
L2 (Ω) and for all t ∈ [0, T ] to

R(t) = −
∫ t

0

(
r − h2 (θ1)

2

)
Eσ
[
Z

∫
R+

v1 (s, x) f ′(x)dx

]
ds

+

∫ t

0

h2 (θ1)

2
Eσ
[
Z

∫
R+

v1 (s, x) f ′′(x)dx

]
ds
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−ρ1,1

∫ t

0
h (θ1)Eσ

[
zs

∫
R+

v1 (s, x) f ′(x)dx

]
ds (5.20)

in the subsequence {εk′′n : n ∈ N} of {εkn : n ∈ N}.
We will prove now that the above convergence holds also weakly in L2 (Ω× [0, T ]). If

we test all the terms in the RHS of (5.18) against some
(
B0
· , B

1
·
)

- measurable random
variable U ∈ L2 (Ω), we have that the occurring quantities converge in the subsequence
{εk′′n : n ∈ N} for almost all t ∈ [0, T ], and we need to show that this convergence holds
also weakly in L2 ([0, T ]). This can be shown easily by using the Dominated Convergence
Theorem, since we can show that these quantities are uniformly bounded in t ∈ [0, T ].
Indeed, since v0,εkn is bounded by 1, by using the Cauchy-Schwartz inequality and other
standard norm estimates we have

E

[
U

1
√
εk′′n

∫ t

0

(
g
(
σ

1,εk′′n
s

)
− g (θ1)

)
Eσ
[
Vs

∫
R+

v
0,εk′′n (s, x) f (k)(x)dx

]
ds

]

≤
∥∥∥f (k)

∥∥∥
L1(R+)

sup
0≤s≤T

‖Vs‖L1(Ω) E

[
|U | 1
√
εk′′n

∫ t

0

∣∣∣g (σ1,εk′′n
s

)
− g (θ1)

∣∣∣ ds]

≤
∥∥∥f (k)

∥∥∥
L1(R+)

sup
0≤s≤T

‖Vs‖L1(Ω) ‖U‖L2(Ω) E
[
T

εk′′n

∫ T

0

(
g
(
σ

1,εk′′n
s

)
− g (θ1)

)2

ds

]
and by using also estimate (5.16)

E
[
U

∫ t

0
g (θ1)Eσ

[
Vs

∫
R+

v1,εkn (s, x) f (k)(x)dx

]
ds

]
≤ Tg (θ1)M ′′

∥∥∥f (k)
∥∥∥
L2(R+)

sup
0≤s≤T

‖Vs‖L1(Ω) ‖U‖L1(Ω)

for any g ∈ {h, h2}, V· ∈ {Z, z·} and k ∈ N, with the RHS of the first being independent
of t and convergent as n→ +∞ (by Lemma 5.2), and the RHS of the second being a nice
uniform bound.

Finally, since we have shown that the RHS of (5.18) converges (in a subsequence of
{εkn : n ∈ N}) to R(·), weakly in L2 (Ω× [0, T ]), and since the LHS of (5.18) converges
in the same topology to

Eσ
[
Z

∫
R+

v1 (t, x) f(x)dx

]
,

by the uniqueness of weak limits and (5.20) we must have

Eσ
[
Z

∫
R+

v1 (t, x) f(x)dx

]
= −

∫ t

0

(
r − h2 (θ1)

2

)
Eσ
[
Z

∫
R+

v1 (s, x) f ′(x)dx

]
ds

+

∫ t

0

h2 (θ1)

2
Eσ
[
Z

∫
R+

v1 (s, x) f ′′(x)dx

]
ds

−ρ1,1

∫ t

0
h (θ1)Eσ

[
zs

∫
R+

v1 (s, x) f ′(x)dx

]
ds

= −Eσ
[
Z

∫ t

0

(
r − h2 (θ1)

2

)∫
R+

v1 (s, x) f ′(x)dxds

]
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+Eσ
[
Z

∫ t

0

h2 (θ1)

2

∫
R+

v1 (s, x) f ′′(x)dxds

]
−Eσ

[
Z

∫ t

0
ρ1,1h (θ1)

∫
R+

v1 (s, x) f ′(x)dxdW 0
s

]
.

The desired result follows, since the space of random variables Z = E [Z] +
∫ T

0 zsdW
0
s for

which z· has derivatives with bounded moments in [0, T ] is a dense subspace of L2
σ (Ω),

no matter what the volatility paths are.

6 Fast mean-reversion - small vol-of-vol: discussion of the
rate of convergence

What we have now is the strong convergence of our system as ε→ 0+, and a weak result
for characterizing a possible correction of order O (

√
ε). While the last weak result seems

to be the strongest possible, it doesn’t seem to be really useful, mainly due to the lack of
uniqueness of solutions to the SPDE which characterizes possible corrections. It seems
thus that both in this small vol-of-vol setting and the fast mean-reversion - large vol-of-
vol setting studied in earlier sections, we can only have convergence of probabilities of
the form (1.3), which means that the two settings are equally good. However, we will
see that this is not the case, since in the large vol-of-vol setting we have shown that we
have only weak convergence of default masses, while in this small vol-of-vol setting we
have established strong convergence, which will allow us to estimate the exact rate of
convergence of probabilities of the form (1.3). When a certain regularity condition is
satisfied at both a and b, this rate is going to be of order O ( 3

√
ε).

To compute the rate of convergence mentioned above, we define first the limiting
model, where the i-th logarithmicaly scaled asset price Xi,∗

· evolves in time according to

dXi,∗
t =

(
ri − h2(θi)

2

)
dt+ h(θi)

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

Xi,∗
t = 0, t > Ti := inf{s ≥ 0 : Xi,∗

s ≤ 0}
Xi,∗

0 = xi

(6.1)

for all i ∈ N. Under this model, the random mass of non-defaulted assets equals

P
(
X1,∗
t > 0 |W 0

· , G
)

, with P
(
X1,∗
t > 0 |W 0

· , C
′
1, G

)
= v0 (t, 0) =

∫ +∞
0 u (t, x) dx, where

u is the unique solution to the SPDE (5.6) in L2(Ω× [0, T ] ;H1
0 (R+)). We consider now

the approximation error for the probabilities we are approximating, i.e

E(x, T )

=

∫ T

0

∣∣∣P(P(X1,ε
t > 0 |W 0

· , B
0
· , G

)
> x

)
− P

(
P
(
X1,∗
t > 0 |W 0

· , G
)
> x

)∣∣∣ dt
for x ∈ [0, 1], and we will show that this error is expected to be of order O ( 3

√
ε), in

the worst case. Indeed, let Et, ε = {ω ∈ Ω : P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
> x} for ε > 0,

Et, 0 = {ω ∈ Ω : P
(
X1,∗
t > 0 |W 0

· , G
)
> x}, and observe that

E(x, T ) =

∫ T

0
|P (Et, ε)− P (Et, 0)| dt,

31



=

∫ T

0

∣∣P (Et, ε ∩ Ect, 0)− P
(
Et, 0 ∩ Ect, ε

)∣∣ dt,
≤

∫ T

0
P
(
Et, ε ∩ Ect, 0

)
dt+

∫ T

0
P
(
Et, 0 ∩ Ect, ε

)
dt,

Next, for any η > 0 we have

P
(
Et, ε ∩ Ect, 0

)
= P

(
P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
> x > P

(
X1,∗
t > 0 |W 0

· , G
))

= P
(
P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
> x > x− η > P

(
X1,∗
t > 0 |W 0

· , G
))

+P
(
P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
> x > P

(
X1,∗
t > 0 |W 0

· , G
)
> x− η

)
≤ P

(∣∣∣P(X1,ε
t > 0 |W 0

· , B
0
· , G

)
− P

(
X1,∗
t > 0 |W 0

· , G
)∣∣∣ > η

)
+P
(
x > P

(
X1,∗
t > 0 |W 0

· , G
)
> x− η

)
≤ 1

η2
E
[(

P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
− P

(
X1,∗
t > 0 |W 0

· , G
))2

]
+P
(
x > P

(
X1,∗
t > 0 |W 0

· , G
)
> x− η

)
(6.2)

and if we denote by S the σ-algebra generated by the volatility paths, since X1,∗
t is

independent of S and the path of B0
· , by Cauchy-Schwartz inequality we obtain

E
[(

P
(
X1,ε
t > 0 |W 0

· , B
0
· , G

)
− P

(
X1,∗
t > 0 |W 0

· , G
))2

]
= E

[(
E
[
P
(
X1,ε
t > 0 |W 0

· , C
′
1, S, G

)
− P

(
X1,∗
t > 0 |W 0

· , C
′
1, G

)
|W 0
· , B

0
· , G

])2
]

≤ E
[
E
([

P
(
X1,ε
t > 0 |W 0

· , C
′
1, S, G

)
−P
(
X1,∗
t > 0 |W 0

· , C
′
1, G

))2
|W 0
· , B

0
· , G

]]
= E

[(
P
(
X1,ε
t > 0 |W 0

· , C
′
1, S, G

)
− P

(
X1,∗
t > 0 |W 0

· , C
′
1, G

))2
]

=
∥∥v0,ε (t, 0)− v0 (t, 0)

∥∥2

L2(Ω)
. (6.3)

We assume now that P
(
X1,∗
t > 0 |W 0

· , G
)

has a bounded density near x. This is some-

thing we are not going to prove here, but we expect it to hold for almost all (if not all)
x. Then we have that

P
(
x > P

(
X1,∗
t > 0 |W 0

· , G
)
> x− η

)
= O (η) . (6.4)

Thus, we can plug (6.3) and (6.4) in (6.2) to obtain

P
(
Et, ε ∩ Ect, 0

)
≤
∥∥v0,ε (t, 0)− v0 (t, 0)

∥∥2

L2(Ω)
+O (η) (6.5)
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for any η > 0, and in a similar way we can obtain

P
(
Et, 0 ∩ Ect, ε

)
≤
∥∥v0,ε (t, 0)− v0 (t, 0)

∥∥2

L2(Ω)
+O (η) (6.6)

Finally, plugging the above two estimates in (6.2), taking η = εp for some p > 0, and
recalling Remark 5.5, we find that

E(x, T ) ≤ O (εp) +O
(
ε1−2p

)
(6.7)

which becomes optimal as ε→ 0+ when 1−2p = p⇔ p = 1
3 . This gives E(x, T ) = O ( 3

√
ε)

as ε→ 0+.
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A APPENDIX: Proofs of technical results

In this Appendix we prove Theorem 2.3, Theorem 2.4, and the two technical lemmas
from Section 5.

Proof of Theorem 2.3. It suffices to show that the two-dimensional continuous Markov
chain

(
σ1,1
· , σ2,1

·

)
is positive recurrent. To do this, we set H i(x) =

∫ x
0

1
vig(y)dy which is a

strictly increasing bijection from R to itself, and Zi· = H i
(
σi,1·

)
for i ∈ {1, 2}. Then we

need to show that
(
Z1
· , Z

2
·
)

is a positive recurrent diffusion. It is easy to verify now that
the infinitesimal generator LZ of Z =

(
Z1
· , Z

2
·
)
, maps any smooth function F : R2 → R

to

LZF (x, y) = V 1(x)Fx(x, y) + V 2(y)Fy(x, y) +
1

2
(Fxx(x, y) + Fyy(x, y)) + λFxy(x, y)

for λ = ρ2,1ρ2,2 < 1 and V i(x) =
κi

(
θi−(Hi)

−1
(x)
)

vig((Hi)−1(x))
− vi

2 g
′
((
H i
)−1

(x)
)

for i ∈ {1, 2},
which are two continuous and strictly decreasing bijections from R to itself. We shall use
now Theorem 2.5 from [27]. Under the notation of that paper, we can easily compute

A(z, w)(s, (x, y)) =
1

2
+ λ

(x− z)(y − w)

(x− z)2 + (y − w)2

≥ 1

2
+ λ
−1

2

(
(x− z)2 + (y − w)2

)
(x− z)2 + (y − w)2

=
1

2
(1− λ) > 0 (A.1)
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and also B(s, (x, y)) = 1 and

C(z, w)(s, (x, y)) = 2
(
V 1(x)(x− z) + V 2(y)(y − w)

)
(A.2)

for all (x, y), (z, w) ∈ R2. Since the coefficients of LZ are continuous, with the higher
order ones being constant, we can easily verify condition A1 − A2 from [27]. Moreover,
since B and C(z, w) are continuous and A(z, w) lower-bounded by 1

2(1−λ) > 0, we have A5

as well. Next, we choose z and w to be the unique roots of V 1(x) and V 2(y) respectively,
and with the notation of [27] we have

α(r; (z, w), 0) = inf
(x−z)2+(y−w)2=r2

A(z, w)(s, (x, y)) ≥ 1

2
(1− λ) > 0 (A.3)

and

β(r; (z, w), 0) = sup
(x−z)2+(y−w)2=r2

B(s, (x, y))−A(z, w)(s, (x, y)) + C(z, w)(s, (x, y))

A(z, w)(s, (x, y))

≤ 2

1− λ
− 1 +

2

1 + λ
sup

(x−z)2+(y−w)2=r2

C(z, w)(s, (x, y)) (A.4)

since C(z, w)(s, (x, y)) is never greater than zero and

A(z, w)(s, (x, y)) =
1

2
+ λ

(x− z)(y − w)

(x− z)2 + (y − w)2

≤ 1

2
+ λ

1
2

(
(x− z)2 + (y − w)2

)
(x− z)2 + (y − w)2

=
1

2
(1 + λ)

Fix now an r0 > 0 and take any r > r0. For the pair (x, y) for which the supremum of
C(z, w)(s, (x, y)) is attained when (x − z)2 + (y − w)2 = r2, we have x = z + r cos(φr)

and y = w + r sin(φr) for some angle φr. Then, we have either | cos(φr)| ≥
√

2
2 or

| sin(φr)| ≥
√

2
2 . If cos(φr) ≥

√
2

2 holds, we can estimate

C(z, w)(s, (x, y)) = 2r cos(φr)V
1(z + r cos(φr)) + 2r sin(φr)V

2(w + r sin(φr))

≤ 2r cos(φr)V
1(z + r cos(φr))

≤ c1r

with c1 =
√

2V 1(z+r0

√
2

2 ) < 0. In a similar way, by using the fact that both V 1 and V 2 are
strictly decreasing, we can find constants c2, c3, c4 < 0 such that C(z, w)(s, (x, y)) < c2r,

C(z, w)(s, (x, y)) < c3r and C(z, w)(s, (x, y)) < c4r, when cos(φr) ≤ −
√

2
2 , sin(φr) ≥√

2
2 and sin(φr) ≤ −

√
2

2 respectively. Thus, for c∗ = max{c1, c2, c3, c4} < 0 we have
C(z, w)(s, (x, y)) < c∗r, which can be plugged in (A.4) to give the estimate

β(r; (z, w), 0) ≤ 2

1− λ
− 1 +

2c∗

1 + λ
r (A.5)

for all r ≥ r0. This means that for r0 large enough, with the notation of [27] we have

I(z, w),r0(r) ≤
∫ r

r0

1

r′

(
2

1− λ
− 1 +

2c∗

1 + λ
r′
)
dr′
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≤ c∗∗(r − r0)

for some c∗∗ < 0 and all r ≥ r0. This implies that∫ +∞

r0

e−I(z, w),r0
(r)dr = +∞

and combined with (A.3), it also gives∫ +∞

r0

1

α(r; (z, w), 0)
eI(z, w),r0

(r)dr ≤ 2

1− λ

∫ +∞

r0

ec
∗∗rdr < +∞

Therefore, we have that all the assumptions of Theorem 2.5 from [27] are satisfied for
Z =

(
Z1
· , Z

2
·
)
, which means that

(
Z1
· , Z

2
·
)

is a positive recurrent diffusion, and thus(
σ1,1
· , σ2,1

·

)
is positive recurrent as well.

Proof of Theorem 2.4. We will show first that each volatility process does never hit
zero. Recalling the standard properties of the scale function S(x) of σ1,1

· (see [28]), we
have that

S(x) =

∫ x

θ1

e
−
∫ y
θ1

2κ1(θ1−z)
v2
1zg̃

2(z)
dz
dy (A.6)

and we need to show that lim
n→+∞

S

(
1

n

)
= −∞. Since sup

x∈R
g̃2(x) ≤ 1 <

2κ1θ1

v2
1

, for n ≥ 1
θ1

we have

S

(
1

n

)
= −

∫ θ1

1
n

e

∫ θ1
y

2κ1(θ1−z)
v2
1zg̃

2(z)
dz
dy

≤ −
∫ θ1

1
n

e
∫ θ1
y

(θ1−z)
θ1z

dz
dy

≤ −
∫ θ1

1
n

e
∫ θ1
y

1
z
dz−

∫ θ1
y

1
θ1
dz
dy

≤ −1

e

∫ θ1

1
n

θ1

y
dy = −θ1

e
(ln(n) + ln(θ1))

where the last tends to −∞ as n→ +∞. This shows that our volatility processes remain
positive forever.

Having now that our volatility processes are positive, we can set Zi· = ln
(
σi,1·

)
for

i ∈ {1, 2}, and we need to show that
(
Z1
· , Z

2
·
)

is a positive recurrent diffusion. We will use
the same techniques as in the proof of Theorem 2.4. Again, we can easily determine the
infinitesimal generator LZ of Z =

(
Z1
· , Z

2
·
)
, which this time maps any smooth function

F : R2 → R to

LZF (x, y) = V 1(x)Fx(x, y) + V 2(y)Fy(x, y)

+
v2

1e
−xg̃2(ex)

2
Fxx(x, y) +

v2
2e
−y g̃2(ey)

2
Fyy(x, y)
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+λv1v2e
−x+y

2 g̃(ey)g̃(ey)Fxy(x, y)

for λ = ρ2,1ρ2,2 < 1 and V i(x) = e−x
(
κiθi −

v2
i
2 g̃

2(ex)
)
− κi for i ∈ {1, 2}, which are

again two continuous and strictly decreasing bijections from R to itself (this can be shown
by using the fact that g̃ is increasing and upper-bounded by 1). Under the notation of

[27], by using also the inequality ab ≥ −a2+b2

2 we have

A(z, w)(s, (x, y)) =
1

2

(
v2

1e
−xg̃2(ex)(x− z)2

(x− z)2 + (y − w)2
+
v2

2e
−y g̃2(ey)(y − w)2

(x− z)2 + (y − w)2

)
+λ

v1v2e
−x+y

2 g̃(ex)g̃(ey)(x− z)(y − w)

(x− z)2 + (y − w)2

≥ 1− λ
2

(
v2

1e
−xg̃2(ex)(x− z)2

(x− z)2 + (y − w)2
+
v2

2e
−y g̃2(ey)(y − w)2

(x− z)2 + (y − w)2

)
≥ (1− λ) min{v2

1, v
2
2}

2
min{e−xg̃2(ex), e−y g̃2(ey)} (A.7)

which is strictly positive. Moreover, we can compute

B(s, (x, y)) =
v2

1e
−xg̃2(ex)

2
+
v2

2e
−y g̃2(ey)

2
(A.8)

and
C(z, w)(s, (x, y)) = 2

(
V 1(x)(x− z) + V 2(y)(y − w)

)
(A.9)

for all (x, y), (z, w) ∈ R2. Since the coefficients of LZ , A(z, w)(s, (x, y)), B(s, (x, y)) and
C(z, w)(s, (x, y)) are all continuous, with A(z, w)(s, (x, y)) being strictly positive, we can
easily verify conditions A1 and A5 from [27]. In order to verify A2, we pick a N > 0 and
x, y, x̄, ȳ ∈ [−N, N ], we set

M(x, y) =

 v2
1e
−xg̃2(ex)

2
λv1v2e

−x+y
2 g̃(ex)g̃(ey)
2

λv1v2e
−x+y

2 g̃(ex)g̃(ey)
2

v2
2e
−y g̃2(ey)

2


and we compute

‖M(x, y)−M(x̄, ȳ)‖2L2 =

(
v2

1e
−xg̃2(ex)

2
− v2

1e
−x̄g̃2(ex̄)

2

)2

+

(
v2

2e
−y g̃2(ey)

2
− v2

2e
−ȳ g̃2(eȳ)

2

)2

+

(
λv1v2e

−x+y
2 g̃(ex)g̃(ey)

2
− λv1v2e

− x̄+ȳ
2 g̃(ex̄)g̃(eȳ)

2

)2

≤ CN ‖(x, y)− (x̄, ȳ)‖2L2(R2) (A.10)

where we have used the two-dimensional Mean Value Theorem on each of the three terms,
and the fact all the involved functions have a bounded gradient in [−N, N ]2 (since g̃ has
continuous derivatives). Thus, for δN (r) = CNr, we obtain A2 as well. Next, for some
r0 > 0 and all r ≥ r0, we compute

α(r; (z, w), 0) = inf
(x−z)2+(y−w)2=r2

A(z, w)(s, (x, y))
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≥ (1− λ) min{v2
1, v

2
2}

2
e−max{z, w}−rg̃2(emax{z, w}+r) (A.11)

and

β(r; (z, w), 0) = sup
(x−z)2+(y−w)2=r2

B(s, (x, y))−A(z, w)(s, (x, y)) + C(z, w)(s, (x, y))

A(z, w)(s, (x, y))

= −1 + sup
(x−z)2+(y−w)2=r2

B(s, (x, y)) + C(z, w)(s, (x, y))

A(z, w)(s, (x, y))
(A.12)

where again we choose z and w to be the unique roots of V 1(x) and V 2(y) respectively.
Then, by setting x = z + r cos(φr) and y = w + r sin(φr) with φr ∈ [0, 2π] for the (x, y)
for which the above supremum is attained, since g̃ is increasing we have

C(z, w)(s, (x, y)) = 2

(
e−x

(
κ1θ1 −

v2
1

2
g̃2(ex)

)
− κ1

)
(x− z)

+2

(
e−y

(
κ2θ2 −

v2
2

2
g̃2(ey)

)
− κ2

)
(y − w)

≤ 2

(
e−x

(
κ1θ1 −

v2
1

2
g̃2(ez)

)
− κ1

)
(x− z)

+2

(
e−y

(
κ2θ2 −

v2
2

2
g̃2(ew)

)
− κ2

)
(y − w)

= 2κ1

(
ez−x − 1

)
(x− z) + 2κ2

(
ew−y − 1

)
(y − w)

≤ 2 min{κ1, κ2}
((
ez−x − 1

)
(x− z) +

(
ew−y − 1

)
(y − w)

)
= κr

((
e−r cos(φr) − 1

)
cos(φr) +

(
e−r sin(φr) − 1

)
sin(φr)

)
(A.13)

for κ = 2 min{κ1, κ2}, and since g̃ is bounded, for ξ = max

{
v2

1

2
,
v2

2

2

}
sup
x∈R

g̃(x) we can

also show that

A(z, w)(s, (x, y)) ≤ ξ

(
e−x

(x− z)2

(x− z)2 + (y − w)2
+ e−y

(y − w)2

(x− z)2 + (y − w)2

)
= ξ

(
e−z−r cos(φr) cos2(φr) + e−w−r sin(φr) sin2(φr)

)
= ξ

(
e−z

(
e−r cos(φr) − 1

)
cos2(φr) + e−w

(
e−r sin(φr) − 1

)
sin2(φr)

)
+ξ
(
e−z cos2(φr) + e−w sin2(φr)

)
≤ −ξ

(
e−z

(
e−r cos(φr) − 1

)
cos(φr) + e−w

(
e−r sin(φr) − 1

)
sin(φr)

)
+ξ
(
e−z + e−w

)
(A.14)

where we have also used the elementary inequality (eab − 1)a2 ≤ −(eab − 1)a for |a| ≤ 1
and b < 0. By using (A.13) and (A.14) now we obtain

C(z, w)(s, (x, y))

A(z, w)(s, (x, y))
≤ −rκ

ξ

`(r)

`(r) + ξ (e−z + e−w)
(A.15)
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where

`(r) = −ξ
(
e−z

(
e−r cos(φr) − 1

)
cos(φr) + e−w

(
e−r sin(φr) − 1

)
sin(φr)

)
≥ −ξe−z

(
e−r cos(φr) − 1

)
cos(φr)

= ξe−z
∣∣∣e−r cos(φr) − 1

∣∣∣ | cos(φr)|

≥ ξmin{e−z, e−w}
√

2

2
min

{∣∣∣e−r0√2
2 − 1

∣∣∣ , ∣∣∣er0√2
2 − 1

∣∣∣} (A.16)

since we take r ≥ r0, and without loss of generality we can assume that | cos(φr)| ≥
√

2
2 .

Thus, (A.15) implies that there is a universal c∗ < 0 such that

C(z, w)(s, (x, y))

A(z, w)(s, (x, y))
≤ c∗r (A.17)

when r ≥ r0. Plugging the last in (A.12) we obtain

β(r; (z, w), 0) = −1 + sup
(x−z)2+(y−w)2=r2

B(s, (x, y)) + C(z, w)(s, (x, y))

A(z, w)(s, (x, y))

≤ −1 + pc∗r + sup
(x−z)2+(y−w)2=r2

B(s, (x, y)) + (1− p)C(z, w)(s, (x, y))

A(z, w)(s, (x, y))

(A.18)

for all r ≥ r0 and a p ∈ [0, 1] which will be chosen later. We will show now that the last
term in the RHS of the above is negative for r0 large enough (depending on p). Indeed,
by using (A.13), the definition of B(s, (x, y)), and the fact that g̃ is upper-bounded, we
can obtain the estimate

sup
(x−z)2+(y−w)2=r2

B(s, (x, y)) + (1− p)C(z, w)(s, (x, y))

A(z, w)(s, (x, y))

≤ sup
(x−z)2+(y−w)2=r2

κ∗ ((ez−x − 1) (x− z) + (ew−y − 1) (y − w)) + ξ(e−x + e−y))

A(z, w)(s, (x, y))

(A.19)

where as before, we have ξ = max

{
v2

1

2
,
v2

2

2

}
sup
x∈R

g̃(x), and κ∗ = (1− p)κ. The numerator

of the last quantity can be easily be show to tend to −∞ when x or y tends to ±∞,
which happens when r → +∞. Thus, for r ≥ r0 with r0 large enough, the RHS of (A.19)
is negative, which can be plugged in (A.17) to give

β(r; (z, w), 0) ≤ −1 + pc∗r

for all r ≥ r0, with c∗ < 0. This means that as in the previous case, with the notation of
[27], for r0 large enough we have

I(z, w),r0(r) ≤
∫ r

r0

1

r′
(
−1 + pc∗r′

)
dr′ ≤ pc∗(r − r0) (A.20)
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with c∗ < 0, for all r ≥ r0. This implies that∫ +∞

r0

e−I(z, w),r0
(r)dr = +∞

which means that our two-dimensional process is recurrent (see Theorem 2.4 in [27]).
However, what we need is positive recurrence, and thus we need to show that∫ +∞

r0

1

α(r; (z, w), 0)
eI(z, w),r0

(r)dr < +∞.

By using (A.20), (A.11) and the fact that g̃ is lower-bounded by something positive, we
can bound the last integral by a positive multiple of∫ +∞

r0

e(1+pc∗)rdr

which is finite when pc∗ < −1. Taking η small enough and r0 big enough, we can force
e−w and e−z to be arbitrarily close to each other, and the lower bound of ` (given by

(A.16)) to be arbitrarily close to
√

2ξ
2 e−z. This makes c∗ (obtained in (A.15)) arbitrarily

close to −κ
ξ

√
2

2√
2

2
+2

< −1 by the assumptions of the Theorem and the definitions of κ and

ξ. Thus, if p is chosen to be very close to 1, we can achieve pc∗ < −1 as well, which gives
the desired result.

Proof of Lemma 5.1. First, we will show that each volatility process has a finite 2p-
moment for any p ∈ N. Indeed, we fix a p ∈ N and we consider the sequence of stopping
times {τn,ε : n ∈ N}, where τn,ε = inf{t ≥ 0 : σi,εt > n}. Setting σi,n,εt = σi,εt∧τn,ε , by Ito’s
formula we have(

σi,n,εt − θi
)2p

=
(
σi,n,ε0 − θi

)2p
− 2pκi

ε

∫ t

0
I[0,τn,ε](s)

(
σi,n,εs − θi

)2p
ds

+2pξi

∫ t

0
I[0,τn,ε](s)

(
σi,n,εs − θi

)2p−1
g
(
σi,n,εs

)
dB̃i

s

+p(2p− 1)ξ2
i

∫ t

0
I[0,τn,ε](s)

(
σi,n,εs − θi

)2p−2
g2
(
σi,n,εs

)
ds (A.21)

for B̃i
s =

√
1− ρ2

2,iB
i
t + ρ2,iB

0
t , where the stochastic integral is a Martingale. Taking

expectations, setting f(t, n, p, ε) = E
[(
σi,n,εt − θi

)2p
]

and using the growth condition of

g and simple inequalities, we can easily obtain

f(t, n, p, ε) ≤M +M ′
∫ t

0
f(s, n, p, ε)ds

with M,M ′ depending only on p, cg and the bounds of σi, ξi, θi. Thus, using Gronwall’s
inequality we get a uniform (in n) estimate for f(t, n, p, ε), and then by Fatou’s lemma we

obtain the desired finiteness of f(t, p, ε) := E
[(
σi,εt − θi

)2p
]
. This implies the almost sure
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finiteness of fC(t, p, ε) := E
[(
σi,εt − θi

)2p
| C
]

as well. Taking then expectations given C

and n → +∞ on (A.21), and using the Monotone Convergence Theorem (all quantities
are monotone for large enough n) and the growth condition on g, we find that

fC(t, p, ε) ≤M +

(
M ′ − 2κi

ε

)∫ t

0
fC(s, p, ε)ds

where again, M,M ′ depend only on p, cg and the bounds of σi, ξi, θi. Using Grownwall’s
inequality again on the above, we finally have∫ t

0
fC(s, p, ε)ds ≤M

∫ t

0
e

(
M ′− 2κi

ε

)
(t−s)

ds (A.22)

where the integral on the RHS of the above is bounded and tends to 0 as ε→ 0+. Thus, by

the Dominated Convergence Theorem we have that
∫ t

0 f(s, p, ε)ds = E
[∫ t

0 fC(s, p, ε)ds
]

tends also to zero, and this gives the desired convergence result.

Proof of Lemma 5.2. From the hypothesis, we can write Zt = Z0 +
∫ t

0 zsds with Z·, z·
bounded in [0, t] by Mz,t. For any j > 0, since g has a linear growth (in the worst case),
there exist some aj , bj > 0 such that g2j(z) ≤ aj(z − θ1)2j + bj for all z ∈ R. Then, for a
given sequence εn → 0+, by using Ito’s formula we have

−κ1

εn

∫ t

0

(
h
(
σ1,εn
s

)
− h (θ1)

)2
Zsds

= −κ1

εn

∫ t

0

(
+∞∑
m=1

1

m!
h(m)(θ1)

(
σ1,εn
s − θ1

)m)2

Zsds

= −κ1

εn

∫ t

0

+∞∑
m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!

(
σ1,εn
s − θ1

)m1+m2 Zsds

= −κ1

εn

∫ t

0

+∞∑
m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!

∫ t

0

(
σ1,εn
s − θ1

)m1+m2 Zsds

=

+∞∑
m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!(m1 +m2)

(
σ1,εn
t − θ1

)m1+m2

Zt

−
+∞∑

m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!(m1 +m2)

(
σ1 − θ1

)m1+m2 Z0

−
+∞∑

m1,m2=1

ξ1
h(m1)(θ1)h(m2)(θ1)

m1!m2!

∫ t

0

(
σ1,εn
s − θ1

)m1+m2−1
g
(
σ1,εn
s

)
ZsdB̃

1
s

−
+∞∑

m1,m2=1

ξ2
1

2

h(m1)(θ1)h(m2)(θ1)(m1 +m2 − 1)

m1!m2!

×
∫ t

0

(
σ1,εn
s − θ1

)m1+m2−2
g2
(
σ1,εn
s

)
Zsds
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−
+∞∑

m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!(m1 +m2)

∫ t

0

(
σ1,εn
s − θ1

)m1+m2 zsds. (A.23)

Observe now that

+∞∑
m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!(m1 +m2)

(
σ1 − θ1

)m1+m2 Z0

=

+∞∑
m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!

∫ σ1

θ1

(y − θ1)m1+m2−1 dyZ0

=

∫ σ1

θ1

1

(y − θ1)

+∞∑
m1,m2=1

h(m1)(θ1)h(m2)(θ1)

m1!m2!
(y − θ1)m1+m2 dyZ0

=

∫ σ1

θ1

1

(y − θ1)

(
+∞∑
m1=1

h(m1)(θ1)

m1!
(y − θ1)m1

)2

dyZ0

= Z0

∫ σ1

θ1

1

(y − θ1)
(h (y)− h (θ1))2 dy (A.24)

while for m1 = m2 = 1 we have

−ξ
2
1

2

h(m1)(θ1)h(m2)(θ1)(m1 +m2 − 1)

m1!m2!

×
∫ t

0

(
σ1,εn
s − θ1

)m1+m2−2
g2
(
σ1,εn
s

)
Zsds

= −ξ
2
1

2

(
h′ (θ1)

)2 ∫ t

0
g
(
σ1,εn
s

)
Zsds. (A.25)

which converges to − ξ2
1
2

(
h′ (θ1) g2 (θ1)

)2 ∫ t
0 Zsds in L2 for all t ≥ 0, as n → +∞. To

show this convergence, we compute the squared L2 norm of the difference between the
sequence and the desired limit, which equals

E

[
ξ4

1

4

(
h′ (θ1)

)4(∫ t

0

(
g2
(
σ1,εn
s

)
− g2 (θ1)

)
Zsds

)2
]

≤
‖ξ1‖4∞

4
M4
htM

2
z,tE

[∫ t

0

(
g2
(
σ1,εn
s

)
− g2 (θ1)

)2
ds

]
,

and since the derivative of g2 is bounded by some Mg > 0, by using the mean value
theorem we have

E
[∫ t

0

(
g2
(
σ1,εn
s

)
− g2 (θ1)

)2
ds

]
≤ M2

gE
[∫ t

0

(
σ1,εn
s − θ1

)2
ds

]
which tends to zero as n→ +∞ (by Lemma 5.1).

We denote now by Sn the sum of all the other terms in (A.23), so next we need to
show that ‖Sn‖L2(Ω) tends to zero in a subsequence {εkn : n ∈ N} of {εn : n ∈ N}, for

almost all t ≥ 0 as n→ +∞. Writing EC for the expectation given the coefficients and L2
C
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for the corresponding L2 norm, we obviously have ‖Sn‖L2(Ω) =

√
E
[
‖Sn‖2L2

C(Ω)

]
, and by

the triangle inequality we have that ‖Sn‖L2
C(Ω) is less than the sum of the L2

C (Ω) norms

of the terms of Sn, which equals

+∞∑
m1,m2=1

∣∣h(m1)(θ1)h(m2)(θ1)
∣∣

m1!m2!(m1 +m2)

√
E
[(
σ1,εn
t − θ1

)2(m1+m2)
Z2
t | C

]

+
+∞∑

m1,m2=1

ξ1

∣∣h(m1)(θ1)h(m2)(θ1)
∣∣

m1!m2!

×

√√√√E

[(∫ t

0

(
σ1,εn
s − θ1

)m1+m2−1
g
(
σ1,εn
s

)
ZsdB̃1

s

)2

| C

]

+

+∞∑
m1+m2≥3

ξ2
1

2

∣∣h(m1)(θ1)h(m2)(θ1)(m1 +m2 − 1)
∣∣

m1!m2!

×

√√√√E

[(∫ t

0

(
σ1,εn
s − θ1

)m1+m2−2
g2
(
σ1,εn
s

)
Zsds

)2

| C

]

+

+∞∑
m1,m2=1

∣∣h(m1)(θ1)h(m2)(θ1)
∣∣

m1!m2!(m1 +m2)

√√√√E

[(∫ t

0

(
σ1,εn
s − θ1

)m1+m2

zsds

)2

| C

]
.

(A.26)

Then, by using Ito’s isometry, the boundedness of Z· and z· in [0, t] by Mz,t, the linear
growth of g combined with the triangle inequality, the boundedness of the sequence{
h(n) (θ1) : n ∈ N

}
by the deterministic constant Mh, and finally the Cauchy-Schwartz

inequality, we can bound the above by a multiple of

+∞∑
m1,m2=1

1

m1!m2!(m1 +m2)

√
E
[(
σ1,εn
t − θ1

)2(m1+m2)
| C
]

+
+∞∑

m1,m2=1

1

m1!m2!

√∫ t

0
E
[(
σ1,εn
s − θ1

)2(m1+m2)
| C
]
ds

+
+∞∑

m1,m2=1

1

m1!m2!

√∫ t

0
E
[(
σ1,εn
s − θ1

)2(m1+m2−1)
| C
]
ds

+
+∞∑

m1+m2≥3

(m1 +m2 − 1)

m1!m2!

√∫ t

0
E
[(
σ1,εn
s − θ1

)2(m1+m2−1)
| C
]
ds

+

+∞∑
m1+m2≥3

(m1 +m2 − 1)

m1!m2!

√∫ t

0
E
[(
σ1,εn
s − θ1

)2(m1+m2−2)
| C
]
ds

+

+∞∑
m1,m2=1

1

m1!m2!(m1 +m2)

√∫ t

0
E
[(
σ1,εn
s − θ1

)2(m1+m2)
| C
]
ds. (A.27)
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Using now the inequality x < 1
η2x

2 + η2 to get rid of the square roots, then Tonelli’s
Theorem to interchange the sums with the integrals and the expectations, and finally a
few trivial inequalities like m1 +m2− 1 ≤ m1m2, we find that each of the above six sums
is less than

E

 +∞∑
m1+m2≥1

1
η2

(
σ1,εn
s − θ1

)2(m1+m2)
+ η2

m1!m2!
| C



=
2

η2
E
[(
σ1,εn
s − θ1

)2 | C]+
1

η2
E


+∞∑
m=1

(
σ1,εn
s − θ1

)2m

m!


2

| C


+2η2 + η2

(
+∞∑
m=1

1

m!

)2

=
1

η2

(
2E
[(
σ1,εn
s − θ1

)2 | C]+ E

[(
e(σ

1,εn
s −θ1)

2

− 1

)2

| C

])
+η2

(
2 + (e− 1)2

)
computed at s = t, or its integral for s ∈ [0, t]. In both cases, the desired result follows
because in a subsequence {εkn} of {εn}, for very small η > 0 and very large n, the L2 (Ω)
norm of both quantities can be made arbitrarily small, for almost all t > 0. Indeed, for
any t > 0 we have√√√√√E

(∫ t

0

(
2E
[(
σ1,ε
s − θ1

)2
| C
]

+ E

[(
e(σ
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ds
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0
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ds+
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(A.28)

and in a similar way√√√√√E
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(A.29)
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and we will show that the RHS of (A.28) tends to zero as ε → 0+ for all t > 0, which
implies also that the RHS of (A.29) tends to zero in subsequences for almost all t > 0.
For the first term of the RHS of (A.28), convergence to zero follows by Lemma 5.1, while
for second term we can use the inequality ex − 1 ≤ xex for x ≥ 0 to obtain∫ t

0
E

[(
e(σ

1,ε
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2

− 1

)4
]
ds ≤
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with
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0 E
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]
ds tending to zero as ε → 0+, and

∫ t
0 E
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e8(σ1,ε

s −θ1)
2
]
ds ≤ 1 for

small enough ε. The last is true because(
σ1,ε
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)2
=

(
σ1,ε
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− 2κ1

ε
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0
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+2ξ1
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s

+ξ2
1

∫ t

0
g2
(
σ1,ε
t

)
ds (A.30)

which means that when ε < ε0 for ε0 small enough, we can use the boundedness of g, κ1

and ξ1 to bound e8(σ1,ε
t −θ1)

2

by the Doleans exponential of 4ξ1

∫ t
0

(
σ1,ε
t − θ1

)
g
(
σ1,ε
t

)
dB̃1

s ,

which is a local Martingale with expectation less than 1. Observe that ε0 should not
depend on the coefficients, and this is why a deterministic positive lower bound for κ1 is
needed. This completes the proof of the first convergence result.

If h is a polynomial, there are only finitely many terms in (A.26), so we can replace
the infinite sums in (A.27) with finite ones. In that case, we can just use the boundedness
of the coefficients and 5.1 to show that the finitely many terms in these sums tend all to
zero in L2 (Ω), without the need to assume that g is bounded.

The second convergence result can be obtained in the same way, since we can compute
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×
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where
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while for m = 1 and m = 2 we have
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respectively, whose L2 distances from ξ1h
′(θ1)g (θ1)

∫ t
0 ZsdB̃

1
s and

ξ2
1
4 h
′′ (θ1) g2 (θ1)

∫ t
0 Zsds

respectively are bounded by multiples of E
[∫ t

0

(
g2
(
σ1,εn
s

)
− g2 (θ1)

)2
ds

]
which tends to

zero, as we have shown earlier. To show that the L2 norm of the sum of all the other terms
tends to zero, we need to follow the same steps we followed for showing the corresponding
result in the proof of the first convergence result. The only difference is that this time
the computations involve controlling certain sums by exponential Taylor series, and not
by the squares of these series. The proof of the Lemma is now complete.
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